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1 Introduction

A large empirical literature in economics and finance documents seasonalities in stock, accounting,

and macroeconomic variables. Chang et al. (2017) and Hartzmark and Solomon (2018), for example,

find seasonalities in corporate earnings. Heston and Sadka (2008, 2010) and Keloharju et al. (2016,

2021) report seasonalities in stock returns, showing that a stock’s past returns over the same calendar

month positively signal future returns (“same-calendar-month premium”). Ogden (2003) discovers

seasonalities in aggregate production, consumption, and market capitalization. Interestingly, Grullon

et al. (2020) connect the seasonalities in stock and accounting data, establishing that stocks tend to

underperform (outperform) in their high (low) sales quarters (“seasonal sales premium”).

In this paper, we develop a real options model in which a firm exposed to seasonal variations in its

output price is able to produce, store in inventory, and sell out of inventory some homogenous output

good, separating the production and selling decisions. The model predicts that the optimal policy

for a firm with low inventory holding costs is to spread out production over some period before its

high price season, store the produced output in inventory, and sell it in the high price season, in that

way minimizing its convexly increasing production costs. An interesting asset pricing implication of

that policy is that such a firm essentially prepays some of its quasi-fixed costs and thus lowers its

operating leverage up until its high price season. In turn, the gradual decline in operating leverage

leads to a gradual decline in the firm’s expected return up until that season. Conversely, the model

predicts that the optimal policy for a firm with high inventory holding costs is to produce closer

to its high price season, leading the expected return of such a firm to be more stable over time. In

agreement with those predictions, we empirically establish that a firm’s ability to build up inventories

strongly and positively conditions Grullon et al.’s (2020) seasonal sales premium.

To offer intuition for why we suspect inventory holding costs to vary across firms, consider the

Rhodes Island toy manufacturer Hasbro and the Californian lemon producer Limoneira. While both

firms generate highly seasonal sales, with Hasbro making the largest fraction of its sales over Xmas

and Limoneira over the lemon harvest season, only Hasbro but not Limoneira builds up significant

output inventories before its high sales season. To wit, while Hasbro’s output inventory holdings tend

to be almost 30% higher than their annual average before its high sales quarter, Limoneira’s holdings
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only tend to be about 10% higher. The reason is obviously that it is cheaper and more feasible to

store durable goods (like toys) than non-durable goods (like lemons), inducing Hasbro to spread out

its production over a much longer period before its high sales season than Limoneira.

In our theoretical work, we develop a real options model of an all-equity-financed firm operating

over an infinite horizon and facing a stochastic output price obeying a generalized geometric Brownian

motion. Crucially, the drift term of that geometric Brownian motion contains a sine function producing

seasonal variations in the output price. In each instant, the firm optimally decides how much output

to produce and add to its inventory (“production decision”) and how much to sell out of its inventory

(“selling decision”). The model solution suggests that the firm’s optimal policy is to produce to build

up output inventories over some period before its high-price season, to sell its entire output inventory

in that season, and to produce to instantaneously sell over some period after that season. Importantly,

inventory holding costs critically condition the lengths of the inventory building and the instantaneous

selling periods, with higher costs leading to a longer instantaneous selling but a shorter inventory

building period. Yet, since the firm only prepays quasi-fixed costs over the inventory building period,

it only observes gradual declines in its operating leverage and expected return over that period. The

upshot is that a greater ability to build up inventories, as facilitated through lower inventory holding

costs, leads exogenous seasonal variations in output prices to more strongly translate into positively

(negatively) related endogenous seasonal variations in sales (expected firm returns).

We also look into an extension of our model in which we award the firm a growth option allowing

it to expand its production capacity. While the extension demonstrates that, in a world with seasonal

output prices, corporate investment can also be seasonal, it further suggests that the growth option

does not greatly modify how seasonality in the output price translates into seasonality in the expected

firm return, at least not when the firm does not become more or less likely to exercise the growth

option over time. The main lesson to take away is that our main theoretical conclusions are driven by

the firm’s production and selling policies, and not by its investment policies.

We next empirically test our model’s main novel prediction that the ability to build up output

inventories acts as the mechanism negatively translating seasonal variations in the output price/sales

into seasonal variations in stock returns. To facilitate our tests, we follow Grullon et al. (2020) and

calculate a firm’s historical ratio of sales over a quarter to annual sales, first using the variability in that
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ratio over the year to distinguish between seasonal (high variability) and non-seasonal (low variability)

firms and next using the ratio itself to identify the firm’s high sales season. Similarly, we calculate a

firm’s historical ratio of inventory holdings at the end of some quarter to average inventory holdings

over the ends of all quarters in a year to determine whether the firm holds abnormally high inventories

at the end of the quarter. We finally interpret those firms with high (low) inventory holdings at the end

of the quarter before their high (low) sales quarter as “inventory builders,” while we interpret those

with less high (less low) inventory holdings at that time as “non-inventory-builders.”

Our empirical evidence broadly supports our theory. In line with Grullon et al. (2020), we find

that seasonal firms earn significantly lower stock returns in their high sales relative to their low sales

quarters. Our portfolio sorts, for example, suggest that their mean monthly value-weighted return is

only 0.45% in their high sales quarters but 0.96% in their low sales quarter. The difference of –0.51%

is highly significant (t-statistic: –3.64). Similarly, Fama and MacBeth (1973, FM) regressions of those

firms’ stock returns on the historical quarterly sales-to-annual sales ratio and controls also yield a

significantly negative seasonal sales premium. More crucially, we next demonstrate that inventory

building strongly conditions how sales seasonality translates into stock return seasonality. While

seasonal inventory builders, for example, generate a significant spread in their mean monthly value-

weighted returns across their high and low sales quarters of –0.91% (t-statistic: –5.82), the same spread

is an insignificant –0.27% (t-statistic: –0.83) for non-inventory-builders. Similarly, while subsample

FM regressions conducted on seasonal inventory builders yield a seasonal sales premium of –0.62%

per month (t-statistic: –4.25), those same regressions conducted on seasonal non-inventory builders

yield a corresponding seasonal sales premium of only –0.20% (t-statistic: –1.79).

While our main evidence relies on total inventory holdings to proxy for output (“finished goods”)

holdings, we next establish that output and total inventory holdings are highly positively correlated

over the sample period for which both inventory holding variables are available (April 2008 to December

2019). Also, repeating our empirical analysis using output inventory holdings over the twelve-year

period above does not alter our results. Excluding January observations, we finally confirm that our

conclusions are not attributable to the January effect (Rozeff and Kinney (1976)).

We add to a recent literature on seasonalities in firm-level stock and accounting data. Chang

et al. (2017) report that the announcement of high (low) earnings in fiscal quarters with historically
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high (low) earnings leads to high (low) abnormal returns, attributing those findings to investors and

analysts overweighting the information in the most recent two to three earnings announcements

and neglecting seasonal patterns in earnings. Heston and Sadka (2008, 2010) and Keloharju et al.

(2016, 2021) establish that a stock’s past same-calendar-month returns positively predict its future

returns. While Keloharju et al. (2021) rationalize those findings using temporary mispricing effects

canceling out over the calendar year, Hirshleifer et al. (2020) explain them using a stock’s exposure

to seasonal aggregate investor mood. Grullon et al. (2020) establish that stocks tend to underperform

(outperform) in their high (low) sales quarters, linking those findings to firms’ investment behavior

and financial leverage and investor inattention. We contribute to these studies by developing a real

options asset pricing model detailing how and under what conditions exogenous seasonalities in

output prices translate into endogenous seasonalities in sales and expected firm returns. We next

also offer empirical evidence in complete agreement with the model’s novel implications.

We further contribute to studies looking into the stock pricing of inventory variables. Thomas and

Zhang (2002) show that annual inventory changes negatively price stocks. Using a partial equilibrium

investment model, Belo and Lin (2012) and Jones and Tuzel (2013) argue that the negative pricing

arises through firms with larger inventories facing lower capacity adjustment costs, making them

more flexible and decreasing their expected returns. Chen et al. (2005) and Alan et al. (2014) report

that inventory holdings also negatively price stocks, attributing their results to investors only slowly

incorporating inventory information from financial reports into their stock valuations. Interpreting

large inventory holdings as a signal that a firm has prepaid a significant fraction of its quasi-fixed

costs, our real options asset pricing model suggests a novel dynamic operating leverage (rather than

investment) explanation for the negative inventory holdings and changes premiums.

We further add to the real options asset pricing literature pioneered by Berk et al. (1999) and

Gomes et al. (2003). While earlier models in that literature focus on discount rate risks, ours follows

the more recent models of Carlson et al. (2004), Cooper (2006), Hackbarth and Johnson (2015), and

Aretz and Pope (2018) in focusing on cash flow risks. In contrast to the other more recent models,

ours, however, allows for seasonality in a firm’s output price modeled through a sine function included

in our stochastic process. A further difference is that our model separates the production and selling

decisions, allowing the firm to produce output, store that output in inventory for some while, and sell
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it then. In comparison, the other models restrict the firm to instantaneously sell its output.

We organize our paper as follows. In Section 2, we develop a model in which a firm exposed to

seasonal variations in its output price can build up output inventories to serve that seasonality. In

Section 3, we run empirical tests of the model’s main novel implication that the ability to build up

inventories is necessary for seasonal variations in price to translate into seasonal variations in stock

returns. Section 4 offers robustness check results. Section 5 sums up and concludes. The appendix

contains mathematical proofs, an extension of the model to the case in which the firm owns a single

growth option allowing it to expand its production capacity, and variable definitions.

2 Theoretical Analysis

In this section, we develop a real options model in which a firm exposed to seasonality in its output

price is able to produce output, store that output in inventory, and sell it later. We start with stating

the model’s assumptions. We next derive the optimal production and selling policies before outlining

how we numerically solve the model. We then discuss the model’s implications. We finally offer an

extension of the model in which we award the firm a single capacity expansion option.

2.1 Model Assumptions

Consider an all-equity-financed firm operating over the infinite time horizon t ∈ [0, ∞). In each instant,

the firm is able to produce a homogenous output good and sell it either then or later at a stochastic

price, Pt. We assume that the output price follows a generalized geometric Brownian motion whose

drift term exhibits seasonal variations modeled through an additive sine function component

dPt = (α + κ sin(ηt))Ptdt + σPtdBt, (1)

where the constant α is the linear time trend, the constant κ ≥ 0 controls the magnitude of seasonal

fluctuations, the constant η > 0 governs the length of a seasonal cycle,1 the constant σ > 0 is volatility,

and Bt is a Brownian motion. Setting κ = 0, stochastic process (1) collapses to a standard geometric

Brownian motion, as usually studied in real options asset pricing models in the literature. Assuming
1The length of a seasonal cycle is 2π/η. Since we interpret a seasonal cycle as a year, we always set η = 2π.
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Figure 1: The figure plots five sample paths (non-black lines) and the time-0 conditional expectation (black
line) of stochastic process (1) under the real world measure over the time period from t = 0 to 4. We describe
the stochastic process parameter values in the first paragraph of Section 2.1.

an initial output price (P0) of one, an annualized linear time trend (α) of 8%, a seasonal strength (κ)

of 0.50, a periodicity (η) of 2π, and an annualized volatility (σ) of 10%, Figure 1 plots five sample

paths (non-black lines) plus the time-0 expectation (black line) of stochastic process (1).

Consistent with Pindyck (1988) and Aretz and Pope (2018), the firm owns a fixed amount of

installed capacity equal to K̄ > 0. In each instant, the firm is able to costlessly switch on each capacity

increment to produce output, with one capacity unit producing one output unit per time unit. In

accordance, the firm’s output quantity at time t equals Qt ∈ [0, K̄] per time unit. The firm incurs

instantaneous costs from producing output determined by the convex function CP (Qt) = c1Qt+ 1
2c2Q2

t ,

where c1 ≥ 0 and c2 > 0 are parameters. Having finished production, the firm instantaneously shifts

each output increment into its output inventory, with the amount of output in inventory at time t

equal to It. The firm pays a unit inventory cost of cI > 0 per time unit, so that the present-value cost

at time s from storing one output unit from that time until time t, CI(s, t), is

CI(s, t) =
∫ t

s
e−rucIdu = cI

r

(
e−rs − e−rt

)
, (2)

where r is the constant net risk-free rate of return. Finally, the firm is able to costlessly shift out

of inventory and instantaneously sell an amount of output equal to St ∈ [0, It] at each time t. As a

consequence, the law of motion for the amount of output in inventory, It, is

dIt = (Qt − St)dt. (3)
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Setting St = Qt at each time t, the firm becomes an “instantaneous seller” of its concurrently produced

output, as in other real options asset pricing models in the literature.

In a later extension, we also endow the firm with a single growth option enabling it to irreversibly

double its production capacity K̄ at an investment cost of k. To illustrate that our main theoretical

conclusions are driven by the firm’s production and selling (and not its investment) options, we,

however, refrain from including the growth option in our initial derivations.

Overall, the main model thus contains two types of choice variables, the output quantities to be

produced and shifted into inventory, Qt, and the output quantities to be sold out of inventory, St,

at each time t. The extended model adds the output price threshold at which the firm optimally

exercises its growth option, P ∗
t . In turn, the state space of both models is described by time t (due to

the output price seasonality), the output price Pt, and the amount of output in inventory It.

2.2 Optimal Production and Selling Policies

We next find the firm’s optimal production and selling policy by determining the optimal values for

Qt and St. To do so, we start with writing the firm’s value at time t, W (t, Pt, It), as

W (t, Pt, It) = max
Qs;t,Su;s,t

EQ
t

[(∫ ∞

t

(
−CP (Qs;t) +

∫ ∞

s

(
Pue−r(u−s) − CI(s, u)

)
Su;s,tdu

)
e−r(s−t)ds

)]
subject to

∫ ∞

t

Su;t,tdu = Qt;t + It and
∫ ∞

s

Su;s,tdu = Qs;t ∀s ∈ (t, ∞], (4)

where Qs;t is the output quantity produced at time s, Su;s,t are the sales out of that output quantity

at time u ≥ s, and EQ
t is the time-t conditional expectation under the equivalent martingale measure

under which each asset’s discounted value follows a martingale. To better understand Equation (4),

fix s at s∗ ≥ t. We can then view Qs∗;t as the output quantity produced at time s∗, −CP (Qs∗;t) as

the cost from producing that quantity at time s∗, and
∫∞

s∗

(
Pue−r(u−s∗) − CI(s∗, u)

)
Su;s∗,tdu as the

time-s∗ present value from selling that quantity over the time period starting from s∗.

To determine the firm’s optimal choices for Qt;t and Su;t,t (i.e., its optimal production and selling

decisions at the current time t), we first notice that those choices do not affect the gains and costs

associated with output produced at later times. The reason is that the current output choice Qt;t does

neither affect the production nor the inventory holding costs associated with output produced in the
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future. In the same vein, the current selling decisions Su;t,t do not affect the revenue generated through

selling output produced in the future.2 The upshot is that we can find Qt;t and Su;t,t separately from

the firm’s choices about output produced in the future, solving the problem

max
Qt;t,Su;t,t

EQ
t

[
−CP (Qt;t) +

∫ ∞

t

(
Pue−r(u−t) − CI(t, u)

)
Su;t,tdu

]
, (5)

subject only to the first (but not the second) constraint shown in Equation (4).

As a next step, we realize that if it were optimal to sell a non-zero amount of output at the current

time t (i.e., if St;t,t > 0), it would also be optimal to sell all other output produced or already held in

inventory at the same time since the present value from selling output net of inventory holding costs

does not differ over the output increments. As a result, it is optimal to either sell no (St;t,t = 0) or all

output (St;t,t = Qt;t + It) at the current time t (“bang-bang solution”). To establish which of the two

choices is optimal, we find the time t∗ ∈ [t, +∞) maximizing the present value from selling a single

output unit net of inventory holding costs, solving the problem

max
u∈[t,∞)

EQ
t [Pu]e−r(u−t) − CI(t, u) (6)

and setting St;t,t to Qt;t + It if t = t∗ and else to zero. We show the first-order condition of problem (6)

in the appendix, noting that it has to be numerically solved for t∗.

Having determined its optimal selling policy, the firm’s production problem becomes

max
Qt∈[0,K̄]

−CP (Qt;t) +
(
EQ

t [Pt∗ ]e−r(t∗−t) − CI(t, t∗)
)

Qt, (7)

implying that the optimal output quantity produced at the current time t and sold, in expectation, at

time t∗, Q∗
t , maximizes the discounted benefit from production, the present value of the sales revenue

net of inventory costs, minus the production costs. We show the optimal Q∗
t in the appendix.

Importantly, we stress that the firm does not pre-commit to selling output at the time t∗ > t. In

each instant, the firm decides whether it is optimal to sell all output now (i.e., t∗ = t) or later (i.e.,
2More technically, Pu, CI(s, u), and CP (Qs), with s > t and u > s, are independent of the firm’s choices up until

time t. The independence of Pt comes from the fact that the firm is a price-taker (i.e., the output price does not
depend on the amount of quantity sold by the firm). The independence of CI(s, u) comes from the fact that total
inventory holding costs are linear in the amount of output held in inventory (see Equation (2)).
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Figure 2: The figure plots the time-0 present value of the revenue from selling one output unit at future
time t′ minus the present value of storing it until then (Equation (6)). We describe the parameter values in
the first paragraph of Section 2.1 and in the penultimate paragraph of Section 2.2.

t∗ > t). Even when the firm’s initial intention was to sell at some specific time, it is still able to alter

that decision and sell earlier or later in response to variations in the output price.

Figure 2 helps us to better understand the firm’s optimal policies. Relying on the same stochastic

process parameter values as in Section 2.1 and assuming an expected output-price mimicking portfolio

return (µ) of 10%, a risk-free rate of return (r) of 3%, and an inventory cost (cI) of 10%, all per

annum, the figure plots the time-0 present value from selling one output unit net of inventory holding

costs at future time t′ ∈ [t, ∞) over the period from t = 0 to 4. If the present value attains its

global maximum at the current time, the firm optimally sells its entire instantaneously-produced and

in-inventory output at that time. If it attains its global maximum later, the firm instead builds up

its output inventory without selling output. In the figure, the firm expects to build up its output

inventory without selling until about time t = 0.48 to sell its entire output inventory then. Conversely,

it expects to produce to instantaneously sell from about time t = 0.48 to 0.72, before again building

up its output inventory without selling from about time t = 0.72 to 1.42, and so on.

For simplicity, we refer to a firm building up its output inventory without selling as an “inven-

tory builder” and to a firm producing to instantaneously sell as an “instantaneous seller.”

2.3 Market Value and Expected Excess Return

We next value the firm using contingent claims analysis. To do so, let W IB(t, Pt, It) denote the time-t

value of the firm conditional on an output price of Pt and an amount of output in inventory equal to

It in states in which it is optimal for the firm to act as an inventory builder. Conversely, let W IS(t, Pt)
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denote that same value conditional on an output price of Pt in states in which it is optimal for the firm

to act as an instantaneous seller. Assuming complete markets, we are able to show that W IB(t, Pt, It)

satisfies the three-dimensional partial differential equation (PDE)

∂W IB

∂t
+ Q∗

t

∂W IB

∂It
+ (r − δt)Pt

∂W IB

∂Pt
+ 1

2σ2P 2
t

∂2W IB

∂P 2
t

− rW IB − c1Q∗
t − 1

2c2Q∗2
t − cIIt = 0, (8)

subject to boundary conditions stated in Appendix A. The inhomogeneity in PDE (8), −c1Q∗
t −

1
2c2Q∗2

t −cIIt, are the instantaneous production and inventory cost cash outflows at time t. Conversely,

we are also able to show that W IS(t, Pt) satisfies the two-dimensional PDE

∂W IS

∂t
+ (r − δt)Pt

∂W IS

∂Pt
+ 1

2σ2P 2
t

∂2W IS

∂P 2
t

− rW IS + PtQ
∗
t − c1Q∗

t − 1
2c2Q∗2

t = 0, (9)

subject to other boundary conditions also in Appendix A. The inhomogeneity in PDE (9), PtQ
∗
t −

c1Q∗
t − 1

2c2Q∗2
t , is now the instantaneous net cash flow from producing an amount of output equal to

Q∗
t at time t and instantaneously selling that amount of output at the output price Pt.

To obtain the value of the firm, W (t, Pt, It), we have to “knit together” the firm value components

W IB(t, Pt, It) and W IS(t, Pt) at the times at which the firm optimally switches from acting as an

inventory builder to acting as an instantaneous seller and vice versa, noticing that the set of optimal

switching times depends on the output price. At the times when the firm optimally switches from

inventory builder to instantaneous seller, we impose the value-matching condition

W IB(t, Pt, It) = W IS(t, Pt) + PtIt, (10)

where PtIt is the sales revenue generated from selling the entire output in inventory It at the output

price Pt. In contrast, at the times when the firm optimally switches from instantaneous seller to

inventory builder, we impose the corresponding value-matching condition

W IS(t, Pt) = W IB(t, Pt, It = 0), (11)

where W IB(t, Pt, It = 0) is the value of the inventory builder at time t conditional on an output price
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Figure 3: The figure plots the regions in the output price-time state space in which the firm optimally acts
as inventory builder (white regions) and instantaneous seller (gray regions) over the time period from t = 0
to t = 4. It further plots one single output price sample path over the same period (solid black line), with
the circles indicating when the firm switches from inventory builder to instantaneous seller and the squares
indicating when it switches the other way round. We describe the parameter values in the first paragraph of
Section 2.1, the penultimate paragraph of Section 2.2, and the penultimate paragraph of Section 2.3.

of Pt and an empty output inventory (i.e., It = 0). To avoid negative firm values, we further impose

the general lower bound PtIt + W IB(t, Pt, 0) in the inventory building region, which implies that the

firm always immediately sells off its entire inventory when it is optimal to do so.

Since we are unable to solve the model in closed-form, we use an explicit finite difference method

as solution technique. To do so, we first derive the set of optimal switching times conditional on the

output price Pt. We then set up finite difference grids with sufficiently high maximum values for time t,

price Pt, and output in inventory It. We now solve the two-dimensional grid for W IS(t, Pt) assuming

that the firm always acts like an instantaneous seller. We next solve the three-dimensional grid for

W IB(t, Pt, It) assuming that the firm acts as an inventory builder up until the final switching time,

taking the boundary values for the final switching time from the solution to the prior two-dimensional

grid. We then solve the two-dimensional grid for W IS(t, Pt) assuming that the firm acts as instantaneous

seller up until the penultimate switching time, taking the boundary values for the penultimate switching

time from the solution to the following three-dimensional grid. We continue until we have dealt with

all inventory building and instantaneous selling regions. See Appendix A for details.

Using the parameter values stated in Sections 2.1 and 2.2 and assuming production cost parameter

values (c1 and c2) and an installed capacity (K̄) of one, Figure 3 plot the inventory building (white)

and instantaneous selling (gray) regions in the output price-time state space. It also plots one sample

output price path. Interestingly, the figure shows that the firm always acts as instantaneous seller

when the output price Pt is below a threshold of about 0.20. In accordance, it further suggests
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Figure 4: The figure plots the initial firm value, W (0, Pt, It), against the output price, Pt, and the
output in inventory, It. We describe the parameter values in the first paragraph of Section 2.1, the
penultimate paragraph of Section 2.2, and the penultimate paragraph of Section 2.3.

that a higher price entices the firm to act more often as inventory builder, as can be seen from the

inventory builder-to-instantaneous seller (instantaneous seller-to-inventory builder) switching time

monotonically rising (dropping) with the output price. Intuitively, the greater propensity to act as

inventory builder at higher output prices arises since a higher price implies greater price seasonality

without changing inventory holding costs, with the low seasonality in the price below the threshold

of about 0.20 never justifying incurring inventory holding costs. The figure finally plots all the times

at which the firm switches from inventory builder to instantaneous seller (the circles) and all those at

which it switches in the opposite direction (the squares) under the sample path.

Armed with the solution for the firm’s value, we next compute the firm’s expected return. Since

the only state variable in our model requiring a risk premium is the output price, Pt, we can calculate

the conditional expected excess firm return, E[rW ] − r, from

E[rW ] − r = ΩW (µ − r), (12)

where ΩW is the elasticity of firm value W (t, Pt, It) with respect to the output price Pt, and µ is

the expected return of a mimicking portfolio whose value is perfectly positively correlated with the

output price. Conversely, the elasticity is the ratio of the relative change in firm value to the relative

change in the output price, ΩW = ∂W (t,Pt,It)
∂Pt

Pt
W (t,Pt,It) (see Carlson et al. (2004, 2006, 2010), Cooper

et al. (2005), Cooper (2006), Hackbarth and Johnson (2015), and Aretz and Pope (2018)).
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Figure 5: The figure plots the firm’s optimal production quantity Q∗
t (Panel A), its accumulated output

in inventory It (Panel B), its value W (t, Pt, It) (Panel C), and its expected excess return E[rW ] − r
(Panel D) over the period from t = 0 to 4 under an output price trajectory at which firm value shows no
general tendency to rise or fall. The gray bars in each subplot indicate the periods during which the firm
acts as an instantaneous seller. We describe the parameter values in the first paragraph of Section 2.1,
the penultimate paragraph of Section 2.2, and the penultimate paragraph of Section 2.3.

2.4 Output Price Seasonality, Inventory Building, and Expected Return

We next investigate how inventory building shapes the relation between seasonality in the output price

and seasonality in the expected firm return in our model. To do so, Figure 4 starts with plotting the

initial firm value W (0, Pt, It) against the output price Pt and inventory holding It conditional on the

parameter values used in the prior sections. We stress that the firm is in an inventory building period

at that time. In line with intuition, the figure suggests that the initial firm value rises monotonically

with the output price because a higher output price shifts upward the distribution of future output

price values. It further indicates that firm value also rises monotonically with the output in inventory

since the present value of selling one output unit at the next optimal selling time exceeds the present

value costs of holding the output unit in inventory until that optimal selling time.

Figure 5 displays the firm’s optimal production decisions (Q∗
t ; Panel A), corresponding output in

inventory (It; Panel B), value (W (t, Pt, It); Panel C), and expected excess return (E[rW ] − r; Panel D)

over the time period from t = 0 to 4 under an output price trajectory at which firm value stays roughly

constant over time.3 The gray bars in the panels indicate instantaneous selling periods. Panel A

suggests that the firm raises its production quantity both over the entire period but also over each
3In theory, this output price trajectory is equal to the expected output price under the real-world measure with the

linear drift rate, α, set to zero. Since we, however, use finite-time grids to solve our model, setting α to zero induces
firm value to slightly decrease over time. To mitigate that issue, we set α equal to 0.03. Importantly, our conclusions
do not depend on the specific sample path for the output price employed in the figures.
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Figure 6: The figure plots the firm’s expected excess return E[rW ] − r under an inventory holding cost
of 0.01 (“low;” Panel A), 0.10 (“medium;” Panel B), 0.40 (“high;” Panel C), and infinity (“no inventory
building;” Panel D) over the period from t = 0 to 4 under an output price trajectory at which firm value
shows no general tendency to rise or fall. The gray bars in each subplot indicate the periods during
which the firm acts as an instantaneous seller. We describe the parameter values in the first paragraph
of Section 2.1, the penultimate paragraph of Section 2.2, and the penultimate paragraph of Section 2.3.

inventory building period. While the overall increase is due to the positive linear drift component

of the output price (i.e., α = 0.03), the increase over each inventory building period is attributable

to the firm trading off the benefits from spreading production over time to minimize production

costs and the costs from holding inventory.4 In accordance, Panel B shows that the firm’s output in

inventory rises convexly over the inventory building periods, before jumping to zero at the start of an

instantaneous selling period and staying there until the end of that period.

Panel C of Figure 5 demonstrates that the firm’s optimal production and selling policies induce

its value to sharply rise over inventory building periods but to stay more constant over instantaneous

selling periods. The reason for the sharp rises over the inventory building periods is that the firm

gradually pays off production plus inventory holding costs over those periods associated with output

to be sold for revenue only at the end of the periods. The upshot is that the firm becomes gradually

more operationally delevered over inventory building periods. In contrast, the firm simultaneously

earns the revenues and pays the costs associated with output over the instantaneous selling periods,

leading its operating leverage to be more stable over those periods. Since operating leverage positively

conditions the expected excess return (see Carlson et al. (2004, 2006, 2010)), Panel D finally suggests

that the expected excess return markedly decreases over the inventory building periods and toward

the optimal selling date but stays more constant over the instantaneous selling periods.
4That the firm does not use its inventory building capabilities to smooth its production over time aligns with the

empirical findings of Miron and Zeldes (1988) and Milne (1994).
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The intuition behind the dynamic operating leverage effect in our model is that an inventory builder

essentially prepays “quasi-fixed” costs incurred in producing and selling output in comparison to an

instantaneous seller. While those costs do not affect how firm value responds to output price shocks,

they still lower it, raising the expected firm return through the Pt/W (t, Pt, It) component in the

elasticity in Equation (12). Thus, our dynamic effect closely aligns with the static operating leverage

effects included in other real options asset pricing models in the literature (see, e.g., Carlson et al.

(2004, 2006, 2010), Cooper (2006), Hackbarth and Johnson (2015), and others).

Figure 6 evaluates how the magnitude of inventory holding costs (cI) affects the relation between

seasonality in the output price and seasonality in the expected firm return. To that end, we redo Panel D

of Figure 5 under the assumption that cI is 0.01 (“low;” Panel A), 0.10 (“medium;” Panel B), 0.40 (“high;”

Panel C), and infinite (“no inventory building;” Panel D). Unsurprisingly, the gray bars suggest that a

higher inventory holding costs induce the firm to optimally act less (more) often as inventory builder

(instantaneous seller). Since the expected firm return is, however, almost stable over instantaneous

selling periods, the higher costs also loosen the link between expected return and output price. When

cI is low, the expected return unambiguously drops until the optimal sales date, jumps up directly

after that, and then almost directly drops again. Conversely, when cI is higher, the expected return

only drops over some period before the optimal sales date, jumps up directly after that, and then stays

close to constant for some period. In the limiting case in which cI is so high that the firm never builds

up inventories, the expected return stays essentially constant over time.5 The lesson to be learned is

that lower inventory holding costs induce seasonality in the output price to more strongly translate

into positively (negatively) related seasonality in sales (the expected firm return).

2.5 Endowing the Firm with a Capacity Expansion Option

We next study an extension of our model in which we award the firm a growth option allowing it to

irreversibly double its production capacity at an investment cost of k in Appendix B. The appendix

suggests that the firm is more likely to exercise the growth option earlier (rather than later) on in an
5We also ran comparative statics to gain further insights into the model’s implications. In line with intuition, weaker

seasonal output price fluctuations (lower κ), lower production costs (lower c1 and/or c2), and a lower production capacity
(lower K̄) all weaken the negative relation between seasonality in the output price and seasonality in the expected firm
return since they either lower the firm’s incentives or its ability to build up output inventories.
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inventory building period, so that it can still use the new capacity to produce more output to be

sold during the next high output price season. More technically, Figure B.1 in that appendix reveals

that the optimal investment threshold P ∗
t is itself seasonal, with it taking on higher (lower) values

at the end (in the middle) of an inventory building period. Notwithstanding, Figure B.2 in that

same appendix suggests that awarding the firm the growth option does not materially change how

its expected excess return evolves over time, at least not when the firm stays at a close to constant

distance from exercising the option. In particular, the figures shows that the expected excess return

still markedly drops over inventory building periods, jumps up directly at their end, and stays close

to constant over instantaneous sales periods, just like it did in Panel D of Figure 5.

2.6 Empirical Implications of our Theoretical Work

Taken together, we deduce the following implications from our theoretical work:

(1) A real options asset pricing model with seasonal sales and inventory building can generate a

negative relation between the seasonal variations in a firm’s output price and expected excess

return if inventory holding costs are sufficiently low for firms to build up significant amounts of

output inventories to be sold during the next high output price season.

(2) Since the model firm sells the lion share of its output on the date on which the output price

reaches its seasonal high, the model also generates a negative relation between the seasonal

variations in the firm’s sales and expected excess return under the same conditions.

(3) Raising the inventory holding costs, the model implies that the firm builds up fewer inventories

to be sold during the next high output price season, flattening the negative relation between

the seasonal variations in a firm’s output price (or: sales) and expected excess return. In fact,

as inventory holding costs become sufficiently high, seasonal variations in the output price (or:

sales) no longer translate into seasonal variations in the expected excess return.

While it is hard to empirically study implication (1) since we do not observe the prices at which firms

sell output, Grullon et al. (2020) offer strong empirical support for implication (2). Conversely, we

will offer strong empirical support for implication (3) in the next section.
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3 Empirical Evidence

In this section, we empirically study our main novel theoretical implication that a greater ability

to build up output inventories induces a more negative relation between seasonalities in sales and

expected firm returns. We first introduce our analysis variables and data sources, with Table C1 in

Appendix C offering more details about variable definitions. We next confirm Grullon et al.’s (2020)

conclusion that single-stock returns tend to be negatively related to a firm’s historical sales proportion

in the current fiscal quarter (“seasonal sales premium”). Most crucially, we finally show that the

negative relation between stock returns and historical sales proportions becomes more pronounced

with the extent to which firms are able to build up output inventories, supporting our theory.

3.1 Variables, Data Sources, and Descriptive Statistics

We follow Grullon et al. (2020) in classifying firms as seasonal or non-seasonal firms and in finding the

high and low sales quarters of seasonal firms. To be specific, we first calculate how much each fiscal

quarter of a firm contributes to its annual sales for the fiscal year ending directly before the prior and

for the fiscal year directly before that, ensuring that all data were available to real-time investors. We

next take averages of the proportions by fiscal quarter to mitigate outliers. More technically, we

calculate the average proportion for firm i in fiscal year y and quarter q, QSalesi,y,q, as:

QSalesi,q,y =
(

QuarterlySalesi,q,y−2
AnnualSalesi,y−2

+
QuarterlySalesi,q,y−3

AnnualSalesi,y−3

)
/2, (13)

where QuarterlySalesi,q,y are firm i’s sales over quarter q of fiscal year y, and AnnualSalesi,y are its

total sales over that fiscal year. Intuitively, we can view a high (low) QSalesi,q,y value as signalling

that a firm made a high (low) proportion of its annual sales over the current fiscal quarter over the two

fiscal years ending directly before the prior. To identify a firm as seasonal or non-seasonal, we finally

calculate the standard deviation of QSalesi,q,y over year y, labelling it Seasonalityi,y. Intuitively, we

can view a high (low) Seasonalityi,y value as signalling a seasonal (non-seasonal) firm.6

We measure inventory building using an approach analogous to that used to calculate QSalesi,q,y. In
6Our empirical conclusions are robust to excluding firm-fiscal year observations for which the sum of quarterly

sales does not equal annual sales. Moreover, they are also robust to calculating QSales and Seasonality using a larger
number of prior fiscal years (always excluding the most recent prior fiscal year).
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particular, we first calculate the ratio of a firm’s quarterly inventories at the end of some quarter to

its average quarterly inventories over the fiscal year for the fiscal year directly ending before the prior

and the fiscal year before that. We then again take averages of those ratios by fiscal quarter. More

technically, we calculate the average for firm i in quarter q of fiscal year y, QInventoryi,q,y, as:

QInventoryi,q,y =
(

QuarterlyInventoryi,q−1,y−2
AnnualInventoryi,y−2

+
QuarterlyInventoryi,q−1,y−3

AnnualInventoryi,y−3

)
/2, (14)

where QuarterlyInventoryi,q,y is firm i’s inventory at the end of quarter q in fiscal year y, and Annual-

Inventoryi,y is its average inventory over the quarters in that year. Intuitively, we can view a high

(low) QInventoryi,q,y value as signalling that a firm held an abnormally high (low) inventory in the

fiscal quarter prior to the current over the two fiscal years ending directly before the prior.

Combining the information in QSales, Seasonality, and QInventory, we can distinguish between

seasonal inventory builders and non-inventory builders within and outside their high sales quarters. In

particular, we can classify an observation with high values for all those variables as a seasonal firm

within its high sales quarter which built up inventories to be sold within that quarter (“inventory

builder”). Conversely, we can classify an observation with high values for QSales and Seasonality

but not QInventory as a seasonal firm within its high sales quarter which did not build up inventories

to be sold within that quarter (“instantaneous seller”). To more parsimoniously distinguish between

those types of firms, we finally also define the dummy variable DummyInventoryBuilder to identify

inventory builders. We set that dummy variable equal to one if QSales and QInventory attain their

maximum value in the same fiscal quarter over the current fiscal year and else zero.

In our portfolio sorts, we control for Hou et al.’s (2015) q-theory, Fama and French’s (2015) five-

factor model, and Fama and French’s (2018) six-factor model factors. Conversely, we add MarketBeta,

MarketSize, BookToMarket, Momentum, Investment, and Profitability as control variables in our

single-stock FM regressions. We calculate MarketBeta from Lewellen and Nagel (2006) regressions

estimated over the prior twelve months of daily data. We define MarketSize as the log of the product

of stock price and common shares outstanding at the end of the prior calendar year. BookToMarket is

the log of the ratio of the book value of equity from the fiscal year end in the prior calendar year to the

market value of equity at the end of the prior calendar year; Momentum is the log gross past return
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compounded over months t − 11 to t − 1; and Investment is the log gross percentage change in total

assets over the fiscal year ending in the prior calendar year. Finally, Profitability is the ratio of sales

minus costs of goods sold, selling, general, and administrative expenses, and interest expenses to the

book value of equity, where all variables are from the fiscal year end in the prior calendar year.

We obtain market data from CRSP, accounting data from Compustat, and factor model data

from Ken French and Lu Zhang. We study common stocks traded on the NYSE, Amex, or NASDAQ,

excluding financial and utility stocks. We replace a stock’s return with its delisting return whenever

the delisting return is available. We exclude observations for which quarterly sales and/or quarterly

inventory holdings are negative as well as those for which those variables are not available for the

entire fiscal year. We only include observations for which the sum of quarterly sales is within a 5%

bound of annual sales. In our FM regressions, we further exclude stocks with a price below $2 at the

start of each sample month. With the exception of the stock return, we winsorize all variables at

the 0.5th and 99.5th percentiles per month. Due to the availability of quarterly inventory data in

Compustat, our sample period ranges from January 1979 to September 2019.

In Table 1, we offer descriptive statistics on QSales, Seasonality, QInventory, and DummyInventory-

Builder (Panel A) as well as Spearman rank correlations for the set of those variables plus our control

variables (Panel B). The descriptive statistics are the mean, standard deviation, skewness, kurtosis,

several percentiles, and the number of observations. Except for the number of observations, we calculate

the statistics in both panels first by sample month and then average over our sample period. Panel A

reveals that the data contain 1,080,583 firm-month observations (including 9,531 unique firms). While

the QSales and QInventory means are close to 0.25 by construction, the Seasonality mean suggests

that the average firm observes a 0.03 standard deviation in QSales over an average fiscal year, while the

DummyInventoryBuilder mean indicates that we classify about 36% of our sample firms as inventory

builders. Panel B reports that the correlation between QSales and QInventory is 0.20, suggesting

that firms display some tendency to build up inventories before their high sales season. Interestingly,

the correlations between our main variables and the control variables are all close to zero. The only

exceptions are the negative correlations of DummyInventoryBuilder with MarketSize (–0.18) and

Profitability (–0.17), perhaps arising due to the fact that larger firms operating in more businesses

tend to diversify away seasonalities in the single goods and/or services sold by them.
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Table 1 about here.

3.2 The Seasonal Sales Premium

We next confirm that Grullon et al.’s (2020) finding that seasonal firms tend to have low (high) stock

returns in their high (low) sales season also exists in our data. At the end of each sample month t−1, we

thus first sort stocks into two portfolios according to the median of the Seasonality distribution in that

month, referring to the high (low) Seasonality value stocks as seasonal (non-seasonal) stocks. Within

each of these portfolios, we next sort stocks into three portfolios according to the tercile breakpoints

of the QSales distribution for that portfolio and in that month. We refer to high (low) QSales stocks

as stocks within (outside) their high sales quarter. We also form a spread portfolio long the highest

QSales portfolio and short the lowest. We value-weight the portfolios and hold them over month

t. To adjust portfolio returns for risk, we regress them on the q-theory, five-factor model, or six-factor

model factors, reporting the intercepts (“alphas”) from those regressions.

Table 2 gives the double-sorted portfolio results. While Panel A of the table reports mean portfolio

returns in excess of the risk-free rate of return (“excess returns”) and alphas, Panel B reports the mean

number of stocks per portfolio as well as the time-series means of the cross-sectional means of several

firm characteristics, all as plain numbers. The numbers in square brackets in Panel A are Newey

and West (1987) t-statistics with a lag length of twelve months. The firm characteristics in Panel B

include several of our control variables plus Heston and Sadka’s (2008) RSeason(xy) and Chang

et al.’s (2017) ESeason. RSeason(xy) is the same-calendar-month return averaged over the prior x

calendar years, whereas ESeason is the average sales rank of the current fiscal quarter (Q1, Q2, Q3, or

Q4) over the prior 20 fiscal quarters, with the ranking done in descending order. While columns (1),

(2), (3), and (3)–(1) show the univariate QSales sorts conditional on high Seasonality stocks, columns

(4), (5), (6), and (6)–(4) show those conditional on low Seasonality stocks.

Table 2 about here.

The portfolio sort results in the table strongly support Grullon et al.’s (2020) empirical evidence

and the implications of our theoretical work. Panel A shows that the mean excess returns and alphas of

seasonal stocks in columns (1) to (3) decline monotonically over the QSales portfolios, with the spreads
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in them over the portfolios always being highly significantly negative (see column (3)–(1)). While the

mean excess return of seasonal stocks is, for example, 0.96% per month (t-statistic: 3.93) in their low

sales quarter, it is a much lower 0.45% (t-statistic: 1.93) in their high sales quarter. The difference is

a highly significant –0.50% (t-statistic: –3.64). In contrast, the mean excess returns and alphas of the

non-seasonal stocks in columns (4) to (6) do not form discernible patterns over the QSales portfolios,

leading the spreads in them over the portfolios to be economically and statistically insignificant (see

column (6)–(4)). While the mean excess return of non-seasonal stocks is, for example, 0.69% per

month (t-statistic: 3.47) in their low sales quarter, it is a close to identical 0.64% (t-statistic: 3.10) in

their high sales quarter. The difference is an insignificant –0.05% (t-statistic: –0.59).

The firm characteristic statistics in Panel B suggest that seasonal firms tend to generate about

30% of their sales in their high sales quarter but only about 20% in their low sales quarter (compare

QSales in columns (1) and (3)). Also, they show some weak tendency to build up output inventories to

be sold in their high sales quarters (compare QInventory in those columns). In contrast, non-seasonal

firms tend to generate about the same amount of sales in each quarter and do not tend to build up

inventories to be sold in any quarter (see QSales and QInventory in columns (4) to (6)). Recognizing

that firms with more seasonal sales are more likely to end up in the extreme QSales portfolios in

columns (1) and (3) (or (4) and (6)), the firm characteristic statistics further suggest that seasonal

stocks are, on average, smaller and less profitable than other stocks. Also, they tend to have similar

book-to-market ratios, intermediate-term past returns, and investment expenditures relative to those

other stocks. These findings are in agreement with the correlations in Table 1.

The final two rows of Panel B demonstrate that ESeason, which, just like QSales, also allows us

to identify a firm’s high and low earnings (and thus sales) quarters, rises over the QSales portfolios,

indicating that the two variables broadly agree on the classification of quarters. They further show

that RSeason(xy) decreases over those same portfolios, implying that seasonal firms do not only tend

to produce low (high) stock returns in their current high (low) sales quarters but also in the same

quarters over the prior three, five, and seven calendar years. Thus, the data do not only point to

strong persistence in sales seasonality, but also in the accompanying stock return seasonality.

Overall, this section shows that seasonal firms tend to have low (high) stock returns in their high

(low) sales quarters, in line with our theoretical conclusions. As this evidence has, however, already
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been reported in Grullon et al. (2020), we next study a novel implication of our theory.

3.3 Inventory Building and the Seasonal Sales Premium

We finally study the main novel implication of our theoretical work that a greater ability to build up

inventories leads seasonal stocks to tend to have a lower (higher) stock return in their high (low) sales

quarter. At the end of each sample month t − 1, we thus again first sort stocks into two portfolios

according to the median of the Seasonality distribution in that month. Within each of these portfolios,

we next independently sort them into portfolios first according to the tercile breakpoints of QSales in

that month and second according to the same breakpoints of QInventory in the same month. Within

each QSales (QInventory) portfolio inside each Seasonality portfolio, we finally form a spread portfolio

long the highest QInventory (QSales) portfolio and short the lowest. We value-weight the portfolios

and hold them over month t. To adjust for risk, we again regress portfolio returns on the same sets of

benchmark factors as before and report the intercepts (“alphas”) from those regressions.

To interpret the triple-sorted portfolio results, we stress that a seasonal (non-seasonal) inventory

builder ends up within the top QSales-top QInventory portfolio in the high (low) Seasonality portfolio

within their high sales quarter but within the bottom QSales-bottom QInventory portfolio in the

same Seasonality portfolio within their low sales quarter. As a result, we can measure the seasonal

sales premium of seasonal (non-seasonal) inventory builders from the spread portfolio long the former

triple-sorted portfolio and short the latter. In accordance, a seasonal (non-seasonal) non-inventory

builder ends up within the top QSales-bottom QInventory portfolio in the high (low) Seasonality

portfolio within their high sales quarter but within the bottom QSales-top QInventory portfolio in

the same Seasonality portfolio within their low sales quarter. In the same spirit as before, we can

thus measure the seasonal sales premium of seasonal (non-seasonal) non-inventory builders from the

spread portfolio long the former triple-sorted portfolio and short the latter.

Table 3 offers the mean excess returns of the triple-sorted portfolios (Panel A), the time-series

means of their cross-sectional QSales and QInventory means (Panels B and C, respectively), and their

mean number of stocks (Panel D). As before, the numbers in square brackets in Panel A are Newey

and West (1987) t-statistics with a twelve-month lag length. Also as before, columns (1), (2), (3), and

(3)–(1) focus on the high Seasonality stocks, while columns (4), (5), (6), and (6)–(4) focus on the low
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Seasonality stocks. Panel A strongly supports our theoretical conclusions, suggesting that seasonal

inventory builders produce a significantly lower seasonal sales premium than seasonal non-inventory

builders or non-seasonal stocks. While the mean excess return of seasonal inventory builders is an

insignificant 0.30% per month (t-statistic: 1.39) in their high sales quarter, it is a significant 1.22%

(t-statistic: 4.96) in their low sales quarter, yielding a seasonal sales premium of –0.91% (t-statistic:

–5.82). In contrast, the mean excess returns of seasonal non-inventory builders are a more similar 0.32%

and 0.59% (t-statistics: 0.97 and 1.57) in their high and low sales quarter, all respectively, yielding

an insignificant seasonal sales premium of –0.27% (t-statistic: –0.83). In the same vein, non-seasonal

inventory or non-inventory builders also fail to yield significant seasonal sales premiums.

Table 3 about here.

While Panel B confirms that seasonal and non-seasonal firms observe similar variations in QSales

as in the two-way sorts in Table 2, Panel C reveals that the inventory builders among those firms

observe close to equally large variations in QInventory as in QSales. Seasonal inventory builders, for

example, do not only see their mean QSales values rise from 0.20 to 0.30 from their low to high sales

quarters, but also their mean QInventory values from 0.21 to 0.29 over the same period. Panel D

finally shows that all triple-sorted portfolios are well diversified in terms of stock numbers.

Table 4 reports the q-theory model (Panel A), five-factor model (Panel B), and six-factor model

(Panel C) alphas of the triple-sorted portfolios. The design of each panel is identical to that of Panel A

of Table 3. The table offers strong evidence that controlling for the benchmark factors of those models

does not materially affect our conclusions. While the seasonal sales premium in the inventory builder

subsample is –0.91% per month (t-statistic: –5.82) in the absence of controls (see again Panel A of

Table 3), it is a close –0.86%, –0.91%, and –0.92% (t-statistics: –4.93, –5.48, and –5.50) controlling

for the q-theory, five-factor model, and six-factor model factors, all respectively. In the same vein, the

seasonal sales premiums in the seasonal non-inventory-builder and the non-seasonal inventory-builder

and non-inventory-builder subsamples also stay similar to their previous values.7

7Our triple-sorted portfolio results are robust to reasonable variations in methodology. Specifically, conducting an
entirely dependent triple-sort, the seasonal sales premium is –0.88% per month (t-statistic: –6.75) among seasonal
inventory builders but only –0.28% (t-statistic: –1.06) among seasonal non-inventory builders. Moreover, exclusively
using NYSE stocks to compute breakpoints in the original sorts, that premium is –0.69% (t-statistic: –4.30) among
seasonal inventory builders but only 0.06% (t-statistic: 0.24) among seasonal non-inventory builders.
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Table 4 about here.

We finally conduct FM regressions to estimate the conditional effect of inventory building on the

seasonal sales premium, assessing the robustness of our conclusions to variations in the methodology

used. In the regressions, we project the excess returns of single stocks over month t on a monotonic

transformation of QSales and the controls measured at the end of month t − 1. We run the regressions

separately on the full samples of seasonal and non-seasonal stocks as well as the subsamples of seasonal

and non-seasonal inventory builders and non-inventory builders. While seasonal (non-seasonal) stocks

have a Seasonality value above (below) the median at the end of month t − 1, inventory builders

(non-inventory builders) have a DummyInventoryBuilder value equal to one (zero) at the end of that

month. To mitigate outlier effects and to ensure that results can be compared across subsamples,

we employ the rank of QSales (“QSalesRank”) rather than QSales in the regressions.8 To alleviate

microstructure issues, we also omit stocks with a below $2 price at the end of month t − 1.

Table 5 presents the FM regression results. While columns (1) to (3) focus on the full sample

of seasonal stocks, seasonal inventory builders, and seasonal non-inventory builders, columns (4) to

(6) focus on their non-seasonal counterparts, all respectively. Conversely, column (2)–(3) ((5)–(6))

shows the differences in estimates between the seasonal (non-seasonal) inventory and non-inventory

builders. Plain numbers are monthly premium estimates, whereas the numbers in square parentheses

are Newey and West (1987) t-statistics with a twelve-month lag length. The regressions yield results

in line with the portfolio sorts. In particular, columns (1) and (4) suggest that seasonal — but not

non-seasonal — stocks produce a significant seasonal sales premium. More crucially, while seasonal

inventory builders in column (2) yield a significantly negative QSalesRank premium of –0.62% per

month (t-statistic: –4.25), the same premium is a much less significant –0.20% (t-statistic: –1.79)

for seasonal non-inventory builders in column (3). The difference is a significant –0.40% (t-statistic:

–2.45). Conversely, while non-seasonal inventory builders in column (5) yield a significantly negative

QSalesRank premium of –0.34% (t-statistic: –3.09), the same premium is an insignificant –0.02%
8We obtain similar results from subsample FM regressions on QSales and the controls. While the seasonal inventory

builder subsample, for example, yields a QSales premium of –3.79% per month (t-statistic: –4.07), the same subsample
yields a QSalesRank premium of –0.63% (t-statistic: –4.25). We also obtain similar results from FM regressions jointly
run on seasonal or non-seasonal stocks and featuring DummyInventoryBuilder and an interaction between QSales and
DummyInventoryBuilder. The seasonal-firm regression, for example, yields an insignificant QSales premium of –1.11%
per month (t-statistic: –1.47) but a highly significant interaction premium of –2.51% (t-statistic: –2.33).
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(t-statistic: –0.24) for non-seasonal non-inventory builders in column (6). The difference is a significant

–0.33% (t-statistic: –2.81). The controls yield premiums in line with the literature.

Table 5 about here.

Taken together, this section shows that a greater ability to build up inventories yields a significantly

more negative seasonal sales premium, in complete accordance with our theory. While prior studies

offer alternative explanations for that premium based on investor mood or inattention (see, e.g.,

Grullon et al. (2020), Hirshleifer et al. (2020), and Keloharju et al. (2021), etc.), it is unclear how

those could account for the conditioning effect of inventory building shown in this section.

4 Robustness Tests

In this section, we offer robustness test results. We first establish that conditioning the seasonal sales

premium on an inventory building proxy calculated from output — and not total — inventories does not

change our conclusions. We next show that excluding January months from our tests, as also done by

Heston and Sadka (2008) and Keloharju et al. (2016), neither changes those conclusions.

4.1 Using Output Inventories to Measure Inventory Building

Although our theory analyzes how a firm’s ability to build up output inventories shapes the relation

between seasonalities in its output price (or: sales) and expected return, we nonetheless use quarterly

total inventories (Compustat item: invtq) also including raw material and work-in-progress to measure

inventory building in our empirical work. We do so since, while quarterly total inventories data are

available in Compustat from 1979, quarterly finished goods inventories data (Compustat item: invfgq)

are available only from 2008 for a meaningful number of firms. Given, however, that quarterly finished

goods inventories make up the lion share of quarterly total goods inventories, and that the average

cross-sectional correlation between those two inventory variables (scaled by quarterly total assets) is

0.78, it is unlikely that using quarterly total inventories greatly distorts our findings.

Notwithstanding, Table 6 repeats our triple portfolio sorts in Tables 3 and 4 using an alternative

version of QInventory, QFGInventory, computed analogous to QInventory except that we use quarterly
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finished goods (and not total goods) inventories data in its computation. To be concise, the table only

reports the mean excess returns and alphas of spread portfolios long the top QSales-top QFGInventory

portfolio and short the bottom QSales-bottom QFGInventory portfolio (“inventory builder”) or long

the top QSales-bottom QFGInventory portfolio and short the bottom QSales-top QFGInventory

portfolio (“non-inventory builder”) formed using seasonal (column (1)) or non-seasonal (column (2))

stocks. While Panel A presents the mean excess returns of the spread portfolios, Panels B, C, and D

present their q-theory, five-factor model, and six-factor model alphas, respectively.

Table 6 about here.

Despite the much shorter sample period from July 2008 to April 2019, the triple portfolio sorts

based on QFGInventory yield results in agreement with those based on QInventory. While column (1)

in Panel A, for example, suggests that seasonal inventory builders yield a seasonal sales premium of

–1.50% per month (t-statistic: –3.62), the corresponding premium for non-inventory builders is an

insignificant 0.64% (t-statistic: 1.06). Also as before, column (2) in that panel shows that non-seasonal

inventory or non-inventory builders again only yield insignificant seasonal sales premiums. Adjusting

the mean excess returns for risk does again not change our conclusions (see Panels B to D).

4.2 Excluding January Months

Since the high sales season of a large number of firms is the Christmas season at the end of the

calendar year, and as stock returns tend to be higher in January (see, e.g., Rozeff and Kinney (1976)

and Keim (1983)), it is conceivable that the seasonal sales premium is a manifestation of the higher

January returns. To rule out that possibility, Table 7 follows Heston and Sadka (2008) and Keloharju

et al. (2016) in repeating our triple portfolio sorts in Tables 3 and 4 excluding January months. The

design of the table is identical to that of Table 6. Refuting the idea that January returns drive our

findings, the table suggests that the non-January months produce conclusions in agreement with our

main conclusions. While Panel A shows that the seasonal inventory builders yield a seasonal sales

premium of –1.07% per month (t-statistic: –6.64) outside of January, the corresponding premium for

seasonal non-inventory builders is an insignificant –0.06% (t-statistic: –0.44) then. The same table

further shows that the non-seasonal firms continue to produce insignificant seasonal sales premiums,
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while Panel B to D again suggest that adjusting for risk does not materially alter our results.

Table 7 about here.

5 Conclusion

We consider a real options asset pricing model featuring a firm exposed to seasonal variations in its

output price and able to build up output inventories to be sold later. The model yields the prediction

that the seasonality in the output price only translates into negatively-correlated seasonality in the

expected return if firms find it cheap to build up output inventories and thus start doing so long

before their high price season. Using quarterly sales and inventory data, we offer strong empirical

support for that prediction, showing that seasonal firms only produce low (high) mean stock returns

in their high (low) sales quarter if they hold abnormally high (low) amounts of inventories at the

start of that quarter. Our conclusions are important since they suggest that seasonalities in stock

returns unveiled in recent research are consistent with neoclassical finance theory.

References

Alan, Yasin, George P. Gao, and Vishal Gaur, 2014, Does inventory productivity predict future stock
returns? A retailing industry perspective, Management Science 60, 2416–2434.

Aretz, Kevin and Peter F. Pope, 2018, Real options models of the firm, capacity overhang, and the
cross section of stock returns, Journal of Finance 73, 1363–1415.

Belo, Frederico and Xiaoji Lin, 2012, The inventory growth spread, Review of Financial Studies 25,
278–313.

Berk, Jonathan B., Richard C. Green, and Vasant Naik, 1999, Optimal investment, growth options,
and security returns, Journal of Finance 54, 1553–1607.

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2004, Corporate investment and asset price
dynamics: Implications for the cross-section of returns, Journal of Finance 59, 2577–2603.

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2006, Corporate investment and asset price
dynamics: Implications for SEO event studies and long-run performance, Journal of Finance 61,
1009–1034.

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2010, SEO risk dynamics, Review of Financial
Studies 23, 4026–4077.

27



Chang, Tom Y., Samuel M. Hartzmark, David H. Solomon, and Eugene F. Soltes, 2017, Being
surprised by the unsurprising: Earnings seasonality and stock returns, Review of Financial Studies
30, 281–323.

Chen, Hong, Murray Z. Frank, and Owen Q. Wu, 2005, What Actually Happened to the Inventories
of American Companies Between 1981 and 2000?, Management Science 51, 1015–1031.

Cooper, Ilan, 2006, Asset pricing implications of nonconvex adjustment costs and irreversibility of
investment, Journal of Finance 61, 139–170.

Cooper, Ilan, Bruno Gerard, and Guojun Wu, 2005, Investment Irreversibility, Real Activity and
Asset Return Dynamics, BI Norwegian Business School Working Paper Series.

Fama, Eugene F. and Kenneth R. French, 1992, The cross-section of expected stock returns, Journal
of Finance 47, 427–465.

Fama, Eugene F. and Kenneth R. French, 1993, Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics 33, 3–56.

Fama, Eugene F. and Kenneth R. French, 2015, A five-factor asset pricing model, Journal of Financial
Economics 116, 1–22.

Fama, Eugene F. and Kenneth R. French, 2018, Choosing factors, Journal of Financial Economics
128, 234–252.

Fama, Eugene F. and James D. MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Journal
of Political Economy 81, 607–636.

Gomes, Joao F., Leonid Kogan, and Lu Zhang, 2003, Equilibrium cross section of returns, Journal of
Political Economy 111, 693–732.

Grullon, Gustavo, Yamil Kaba, and Alexander Núñez, 2020, When Low Beats High: Riding the Sales
Seasonality Premium, Journal of Financial Economics 138, 572–591.

Hackbarth, Dirk and Timothy Johnson, 2015, Real options and risk dynamics, Review of Economic
Studies 82, 1449–1482.

Hartzmark, Samuel M. and David H. Solomon, 2018, Recurring firm events and predictable returns:
The within-firm time series, Annual Review of Financial Economics 10, 499–517.

Heston, Steven L. and Ronnie Sadka, 2008, Seasonality in the cross-section of stock returns, Journal
of Financial Economics 87, 418–445.

Heston, Steven L. and Ronnie Sadka, 2010, Seasonality in the cross section of stock returns: the
international evidence, Journal of Financial and Quantitative Analysis 45, 1133–1160.

Hirshleifer, David, Danling Jiang, and Yuting Meng DiGiovanni, 2020, Mood beta and seasonalities
in stock returns, Journal of Financial Economics 137, 272–295.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting anomalies: An investment approach, Review
of Financial Studies 28, 650–705.

Jegadeesh, Narasimhan and Sheridan Titman, 1993, Returns to buying winners and selling losers:
Implications for stock market efficiency, Journal of Finance 48, 65–91.

28



Jones, Christopher S. and Selale Tuzel, 2013, Inventory investment and the cost of capital, Journal
of Financial Economics 107, 557–579.

Keim, Donald B., 1983, Size-related anomalies and stock return seasonality: Further empirical evidence,
Journal of Financial Economics 12, 13–32.

Keloharju, Matti, Juhani T. Linnainmaa, and Peter M. Nyberg, 2016, Return seasonalities, Journal
of Finance 71, 1557–1590.

Keloharju, Matti, Juhani T. Linnainmaa, and Peter M. Nyberg, 2021, Are Return Seasonalities Due
to Risk or Mispricing? Evidence from Seasonal Reversals, Journal of Financial Economics 139,
138–161.

Lewellen, Jonathan and Stefan Nagel, 2006, The conditional CAPM does not explain asset-pricing
anomalies, Journal of Financial Economics 82, 289–314.

Milne, Alistair, 1994, The production smoothing model of inventories revisited, The Economic Journal
104, 399–407.

Miron, Jeffrey A. and Stephen P. Zeldes, 1988, Seasonality, cost shocks, and the production smoothing
model of inventories, Econometrica 56, 877–908.

Newey, Whitney K. and Kenneth D. West, 1987, A simple, positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

Ogden, Joseph P., 2003, The calendar structure of risk and expected returns on stocks and bonds,
Journal of Financial Economics 70, 29–67.

Pindyck, Robert S., 1988, Irreversible investment, capacity choice, and the value of the firm, American
Economic Review 78, 969–985.

Rozeff, Michael S. and William Kinney, 1976, Capital market seasonality: The case of stock returns,
Journal of Financial Economics 3, 379–402.

Thomas, Jacob K. and Huai Zhang, 2002, Inventory changes and future returns, Review of Accounting
Studies 7, 163–187.

29



Table 1
Descriptive Statistics
The table presents descriptive statistics for QSales, Seasonality, QInventory, and DummyInventoryBuilder (Panel A)
and Spearman rank correlations between the set of those variables and controls (Panel B). We calculate both the
descriptive statistics and the correlations by sample month and then average over our sample period. All variables
are winsorized at the 0.5th and 99.5th percentiles computed per month. The sample period is January 1979 to
September 2019. See Table C1 in Appendix C for variable definitions.

Dummy
Inventory

QSales Seasonality QInventory Builder

(1.00) (2.00) (3.00) (4.00)

Panel A: Descriptive Statistics

Mean 0.25 0.03 0.25 0.36
Standard Deviation 0.04 0.03 0.03 0.48
Skewness 0.52 2.67 0.35 0.58
Excess Kurtosis 5.23 9.59 7.73 −1.65
Percentile 1 0.15 0.00 0.14 0.00
Percentile 5 0.20 0.01 0.20 0.00
Quartile 1 0.23 0.01 0.24 0.00
Median 0.25 0.02 0.25 0.00
Quartile 3 0.26 0.04 0.26 1.00
Percentile 95 0.31 0.09 0.30 1.00
Percentile 99 0.37 0.17 0.36 1.00
Observations 1,080,583 1,080,583 1,080,583 1,080,583

Panel B: Spearman Rank Correlations

Seasonality −0.06
QInventory 0.20 −0.03
DummyInventoryBuilder −0.02 0.15 −0.03
MarketBeta 0.00 0.05 0.00 −0.01
MarketSize 0.00 −0.18 0.00 0.00
BookToMarket 0.02 −0.04 0.02 0.01
Momentum 0.00 −0.07 0.01 0.00
Investment −0.03 0.08 −0.07 0.01
Profitability 0.00 −0.17 −0.02 0.02
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Table 2
Univariate QSales Sorts
The table presents the mean excess returns and alphas of portfolios sorted on QSales (Panel A) as well as
characteristics of those portfolios (Panel B). At the end of each sample month t − 1, we first sort stocks into
portfolios based on the median of the Seasonality distribution at that time. Within each Seasonality portfolio, we
next form three portfolios based on the 33rd and 66th percentiles of the QSales distribution at that time. We
value-weight the portfolios and hold them over month t. We also form spread portfolios long the highest QSales
portfolio and short the lowest within each Seasonality portfolio (“High–Low”). The plain numbers in Panel A
are monthly mean excess returns (Returne) and the q-theory model (q), Fama-French (2015) five-factor model
(FF5), and Fama-French (2018) six-factor model (FF6) alphas in percent, while the numbers in square brackets
are Newey and West (1987) t-statistics with a twelve-month lag length. The plain numbers in Panel B are the
mean number of stocks (# Stocks) and the time-series means taken over the cross-sectional means of several
well-known firm characteristics. See Table C1 in Appendix C for variable definitions.

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
Low Med. High H–L Low Med. High H–L

(1.00) (2.00) (3.00) (3.00)–(1) (4.00) (5.00) (6.00) (6.00)–(4)

Panel A: Portfolio Returns and Alphas

Returne 0.96 0.60 0.45 −0.50 0.69 0.84 0.64 −0.05
[3.93] [2.75] [1.93] [−3.64] [3.47] [4.68] [3.10] [−0.59]

q Alpha 0.43 −0.04 −0.12 −0.55 −0.09 0.10 −0.07 0.01
[3.16] [−0.50] [−1.29] [−3.46] [−1.27] [1.44] [−0.99] [0.13]

FF5 Alpha 0.32 −0.13 −0.20 −0.52 −0.11 0.07 −0.12 −0.01
[3.07] [−1.59] [−2.35] [−3.61] [−1.68] [1.17] [−1.58] [−0.11]

FF6 Alpha 0.37 −0.09 −0.17 −0.54 −0.11 0.05 −0.10 0.01
[3.35] [−1.09] [−1.96] [−3.68] [−1.62] [0.92] [−1.30] [0.07]

Panel B: Portfolio Characteristics

# Stocks 338.60 371.15 361.27 22.67 382.52 359.67 396.48 13.96
QSales 0.20 0.25 0.30 0.10 0.24 0.25 0.26 0.03
QInventory 0.24 0.25 0.26 0.02 0.25 0.25 0.25 0.00
MarketBeta 1.09 1.09 1.09 0.00 1.02 1.00 1.02 0.00
Market Size 4.82 5.24 4.84 0.02 5.55 5.78 5.49 −0.05
BookToMarket −0.64 −0.63 −0.60 0.04 −0.55 −0.54 −0.52 0.04
Momentum −0.02 0.00 −0.02 0.00 0.05 0.06 0.04 0.00
Investment 0.13 0.14 0.14 0.01 0.07 0.07 0.07 0.00
Profitability 0.03 0.14 0.05 0.02 0.22 0.24 0.22 0.00
RSeason (3y) 2.30 1.82 1.80 −0.50 1.56 1.37 1.44 −0.12
RSeason (5y) 2.03 1.74 1.65 −0.39 1.57 1.33 1.46 −0.11
RSeason (7y) 1.82 1.59 1.50 −0.33 1.51 1.31 1.39 −0.12
ESeason 8.54 10.31 12.45 3.91 9.32 10.42 11.54 2.22
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Table 3
Double-Sorted QSales and QInventory Portfolios
The table presents the mean excess returns of portfolios independently-sorted based on QSales and QInventory
(Panel A), the mean QSales and QInventory values of those portfolios (Panels B and C, respectively), and the mean
number of stocks per portfolio (Panel D). At the end of each sample month t−1, we first sort stocks into portfolios
based on the median of the Seasonality distribution at that time. Within each Seasonality portfolio, we next
independently sort stocks into portfolios based on, first, the 33rd and 66th percentiles of the QSales distribution at
that time and, second, based on the same percentiles of the QInventory distribution at that time. We value-weight
the portfolios and hold them over month t. We also form spread portfolios long the highest QSales (QInventory)
portfolio and short the lowest within each QInventory (QSales) portfolio (“High–Low”) per Seasonality portfolio. In
addition, we also create spread portfolios long the top QSales/top QInventory portfolio and short the bottom
QSales/bottom QInventory portfolio (“inventory builders”) and long the top QSales/bottom QInventory portfolio
and short the bottom QSales/top QInventory portfolio (“non-inventory builders”) per Seasonality portfolio. The
plain numbers in Panel A are monthly mean excess returns in percent, while the numbers in square brackets are
Newey and West (1987) t-statistics with a twelve-month lag length. The plain numbers in Panels B to C are the
time-series means taken over the cross-sectional means of QSales and QInventory, respectively. The plain numbers
in Panel D are the average number of stocks. See Table C1 in Appendix C for variable definitions.

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel A: Value-Weighted Portfolio Returns

Low 1.22 0.75 0.32 −0.90 0.56 0.96 0.70 0.14
[4.96] [3.13] [0.97] [−4.19] [2.40] [4.66] [2.60] [0.94]

Medium 0.78 0.62 0.57 −0.21 0.90 0.82 0.70 −0.20
[3.18] [2.59] [2.21] [−1.28] [5.01] [4.52] [3.47] [−1.76]

High 0.59 0.45 0.30 −0.29 0.65 0.67 0.56 −0.09
[1.57] [1.98] [1.39] [−0.88] [2.78] [3.18] [2.60] [−0.65]

High–Low −0.63 −0.30 −0.01 0.09 −0.29 −0.14
[−1.94] [−1.80] [−0.06] [0.78] [−2.10] [−0.75]

Seasonal Sales PremiumInventory Builder −0.91 0.00
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−5.82] [0.01]
Seasonal Sales PremiumNon-Inventory Builder −0.27 0.05
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.83] [0.28]

Panel B: Mean QSales

Low 0.20 0.25 0.30 0.10 0.24 0.25 0.26 0.03
Medium 0.21 0.25 0.29 0.09 0.24 0.25 0.26 0.03
High 0.20 0.25 0.31 0.11 0.24 0.25 0.26 0.03
High–Low 0.00 0.00 0.01 0.00 0.00 0.00

(continued on next page)
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Table 3
Double-Sorted QSales and QInventory Portfolios (cont.)

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel C: Mean QInventory

Low 0.21 0.22 0.21 0.00 0.23 0.23 0.23 0.00
Medium 0.25 0.25 0.25 0.00 0.25 0.25 0.25 0.00
High 0.29 0.28 0.29 −0.01 0.27 0.27 0.27 0.00
High–Low 0.08 0.07 0.08 0.05 0.04 0.04

Panel D: Mean Number of Stocks in Portfolio

Low 148.88 123.68 77.49 135.09 111.13 100.11
Medium 102.32 148.54 115.35 132.19 144.71 148.84
High 87.46 98.98 168.49 115.28 103.86 147.58
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Table 4
Risk-Adjusted Double-Sorted QSales and QInventory Portfolios
The table presents the q-theory (Panel A), five-factor (Panel B), and six-factor (Panel C) model alphas of
portfolios independently-sorted based on QSales and QInventory. At the end of each sample month t − 1,
we first sort stocks into portfolios based on the median of the Seasonality distribution at that time. Within
each Seasonality portfolio, we next independently sort stocks into portfolios based on, first, the 33rd and
66th percentiles of the QSales distribution at that time and, second, based on the same percentiles of the
QInventory distribution at that time. We value-weight the portfolios and hold them over month t. We also
form spread portfolios long the highest QSales (QInventory) portfolio and short the lowest within each
QInventory (QSales) portfolio (“High–Low”) per Seasonality portfolio. In addition, we also create spread
portfolios long the top QSales/top QInventory portfolio and short the bottom QSales/bottom QInventory
portfolio (“inventory builders”) and long the top QSales/bottom QInventory portfolio and short the bottom
QSales/top QInventory portfolio (“non-inventory builders”) per Seasonality portfolio. The plain numbers in
each panel are the constants from time-series regressions of the portfolio excess return on the appropriate
benchmark factors in percent, while the numbers in square brackets are Newey and West (1987) t-statistics
with a twelve-month lag length. See Table C1 in Appendix C for variable definitions.

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel A: q-Theory Model Alphas

Low 0.57 0.16 −0.16 −0.72 −0.17 0.23 0.19 0.36
[3.35] [1.05] [−0.96] [−3.12] [−1.82] [1.59] [1.15] [1.91]

Medium 0.11 −0.08 −0.06 −0.17 0.11 0.02 −0.12 −0.23
[0.85] [−0.64] [−0.46] [−1.02] [1.23] [0.25] [−1.28] [−1.75]

High 0.23 −0.18 −0.29 −0.52 −0.22 0.03 −0.16 0.06
[0.60] [−1.27] [−1.98] [−1.18] [−1.91] [0.36] [−1.51] [0.36]

High–Low −0.34 −0.34 −0.13 −0.05 −0.20 −0.35
[−0.77] [−1.57] [−0.70] [−0.36] [−1.25] [−1.78]

Seasonal Sales PremiumInventory Builder −0.86 0.01
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−4.93] [0.08]
Seasonal Sales PremiumNon-Inventory Builder −0.38 0.41
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.90] [1.64]

(continued on next page)
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Table 4
Risk-Adjusted Double-Sorted QSales and QInventory Portfolios (cont.)

Seasonality

High (Above Median) Low (Below Median)

QSales QSales
QInventory Low Med. High H–L Low Med. High H–L

(1) (2) (3) (3)–(1) (4) (5) (6) (6)–(4)

Panel B: Fama-French 5-Factor Model Alphas

Low 0.50 0.04 −0.22 −0.72 −0.18 0.22 0.08 0.26
[3.49] [0.30] [−1.41] [−3.37] [−2.02] [1.67] [0.53] [1.56]

Medium 0.03 −0.13 −0.16 −0.19 0.08 0.00 −0.16 −0.24
[0.24] [−1.08] [−1.23] [−1.13] [0.96] [−0.02] [−1.81] [−1.96]

High 0.07 −0.28 −0.41 −0.49 −0.24 −0.03 −0.22 0.01
[0.24] [−1.97] [−3.36] [−1.31] [−2.31] [−0.33] [−1.96] [0.08]

High–Low −0.43 −0.32 −0.19 −0.06 −0.25 −0.30
[−1.09] [−1.61] [−1.06] [−0.49] [−1.59] [−1.58]

Seasonal Sales PremiumInventory Builder −0.91 −0.04
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−5.48] [−0.29]
Seasonal Sales PremiumNon-Inventory Builder −0.30 0.31
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.80] [1.45]

Panel C: Fama-French 6-Factor Model Alphas

Low 0.57 0.10 −0.13 −0.70 −0.18 0.19 0.11 0.28
[4.13] [0.72] [−0.85] [−3.10] [−1.90] [1.58] [0.65] [1.51]

Medium 0.09 −0.09 −0.14 −0.23 0.08 −0.01 −0.13 −0.21
[0.66] [−0.77] [−1.07] [−1.36] [0.87] [−0.16] [−1.57] [−1.67]

High 0.06 −0.25 −0.35 −0.41 −0.22 −0.03 −0.20 0.02
[0.21] [−1.84] [−3.04] [−1.20] [−2.09] [−0.28] [−1.77] [0.13]

High–Low −0.50 −0.35 −0.22 −0.05 −0.22 −0.30
[−1.41] [−1.73] [−1.24] [−0.37] [−1.50] [−1.57]

Seasonal Sales PremiumInventory Builder −0.92 −0.02
(QSales(3)&QInventory(3) – QSales(1)&QInventory(1)) [−5.50] [−0.15]
Seasonal Sales PremiumNon-Inventory Builder −0.19 0.33
(QSales(3)&QInventory(1) – QSales(1)&QInventory(3)) [−0.56] [1.37]
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Table 5
Fama-MacBeth Regressions of Stock Returns on QSales
The table presents the results from Fama-MacBeth (1973) regressions of excess stock returns over month t on
pricing variables measured until the start of that month. In columns (1), (2), and (3), we run the regressions on
stocks with a Seasonality value above the median, whereas in columns (4), (5), and (6) we run them on stocks with
a value below the median. Conversely, in each set of columns, we run the regressions on all firms (columns (1) and
(4)), those with a DummyInventoryBuilder value equal to one (“inventory builders;” columns (2) and (5)), and
those with a DummyInventoryBuilder value equal to zero (“non-inventory builders;” columns (3) and (6)). We
also report the differences in outcomes across the subsample estimations (columns (2)–(3) and (5)–(6)). Plain
numbers are risk premiums or differences in those, by month and in percent. The numbers in square brackets are
Newey and West (1987) t-statistics with a lag length of twelve months. We exclude stocks whose price is below
$2 at the start of month t. See Table C1 in Appendix C for variable definitions.

Fama-MacBeth Regressions

Seasonality Above Median Seasonality Below Median

Non- Non-
All Inv. Inv. All Inv. Inv.

Firms Builder Builder Diff. Firms Builder Builder Diff.

(1) (2) (3) (2)–(3) (4) (5) (6) (5)–(6)

QSalesRank −0.43 −0.63 −0.20 −0.40 −0.11 −0.34 −0.02 −0.33
[−4.18] [−4.25] [−1.79] [−2.45] [−1.41] [−3.09] [−0.24] [−2.81]

MarketBeta 0.16 0.23 0.12 0.06 0.15 0.13 0.16 −0.11
[0.99] [1.22] [0.75] [0.65] [0.84] [0.69] [0.95] [−1.36]

MarketSize −0.01 0.01 −0.03 0.05 −0.04 −0.02 −0.05 0.04
[−0.41] [0.27] [−0.81] [1.92] [−1.11] [−0.46] [−1.46] [1.85]

BookToMarket 0.23 0.24 0.26 0.03 0.17 0.21 0.15 0.06
[3.22] [2.92] [3.37] [0.49] [2.37] [2.53] [2.11] [0.93]

Momentum 1.04 1.22 0.90 1.22 0.56 0.69 0.50 0.69
[6.07] [6.80] [4.64] [6.77] [2.79] [2.65] [2.63] [2.63]

Investment −0.40 −0.67 −0.20 −0.37 −0.19 −0.61 0.00 −0.62
[−3.49] [−4.55] [−1.34] [−1.96] [−1.64] [−2.97] [0.03] [−2.49]

Profitability 0.35 0.55 0.32 0.20 0.45 0.35 0.56 −0.24
[3.20] [3.72] [2.67] [1.41] [3.45] [1.96] [3.27] [−1.09]

Constant 0.73 0.62 0.75 −0.26 0.83 0.86 0.82 −0.01
[2.19] [1.80] [2.23] [−1.50] [2.52] [2.63] [2.36] [−0.09]
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Table 6
Double-Sorted QSales and QInventory Portfolios Based On Finished-Goods Inventories
The table presents the mean excess returns (Panel A) as well as the q-theory (Panel B), five-factor (Panel C), and
six-factor (Panel D) model alphas of independently-sorted portfolios based on QSales and QFGInventory. At
the end of each sample month t − 1, we first sort stocks into portfolios based on the median of the Seasonality
distribution at that time. Within each Seasonality portfolio, we next independently sort stocks into portfolios
based on, first, the 33rd and 66th percentiles of the QSales distribution at that time and, second, based on the
same percentiles of the QInventory distribution at that time. We value-weight the portfolios and hold them over
month t. We next create spread portfolios long the top QSales/top QInventory portfolio and short the bottom
QSales/bottom QInventory portfolio (“inventory builders”) and long the top QSales/bottom QInventory portfolio
and short the bottom QSales/top QInventory portfolio (“non-inventory builders”) per Seasonality portfolio. Plain
numbers are monthly mean excess returns in percent, while the numbers in square brackets are Newey and West
(1987) t-statistics with a twelve-month lag length. See Table C1 in Appendix C for variable definitions.

Seasonality

Above Median Below Median

(1.00) (2.00)

Panel A: Value-Weighted Portfolio Returns

Seasonal Sales PremiumInventory Builder −1.50 0.12
[−3.62] [0.39]

Seasonal Sales PremiumNon-Inventory Builder 0.64 −0.23
[1.06] [−0.69]

Panel B: q-Theory Model Alphas

Seasonal Sales PremiumInventory Builder −1.61 0.18
[−3.23] [0.52]

Seasonal Sales PremiumNon-Inventory Builder 0.82 −0.28
[1.10] [−0.73]

Panel C: Fama-French 5-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.78 0.03
[−3.68] [0.08]

Seasonal Sales PremiumNon-Inventory Builder 1.22 −0.44
[1.80] [−1.06]

Panel D: Fama-French 6-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.79 0.01
[−3.74] [0.04]

Seasonal Sales PremiumNon-Inventory Builder 1.22 −0.46
[1.76] [−1.09]
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Table 7
Double-Sorted QSales and QInventory Portfolios Excluding January Observations
The table presents the mean excess returns (Panel A) as well as the q-theory (Panel B), five-factor (Panel C), and
six-factor (Panel D) model alphas of independently-sorted portfolios based on QSales and QInventory derived
from our sample data excluding January observations. At the end of each sample month t − 1, we first sort
stocks into portfolios based on the median of the Seasonality distribution at that time. Within each Seasonality
portfolio, we next independently sort stocks into portfolios based on, first, the 33rd and 66th percentiles of the
QSales distribution at that time and, second, based on the same percentiles of the QInventory distribution at
that time. We value-weight the portfolios and hold them over month t. We next create spread portfolios long the
top QSales/top QInventory portfolio and short the bottom QSales/bottom QInventory portfolio (“inventory
builders”) and long the top QSales/bottom QInventory portfolio and short the bottom QSales/top QInventory
portfolio (“non-inventory builders”) per Seasonality portfolio. Plain numbers are monthly mean excess returns
in percent, while the numbers in square brackets are Newey and West (1987) t-statistics with a twelve-month
lag length. See Table C1 in Appendix C for variable definitions.

Seasonality

Above Median Below Median

(1.00) (2.00)

Panel A: Value-Weighted Portfolio Returns

Seasonal Sales PremiumInventory Builder −1.07 −0.06
[−6.64] [−0.44]

Seasonal Sales PremiumNon-Inventory Builder −0.32 −0.01
[−0.99] [−0.04]

Panel B: q-Theory Model Alphas

Seasonal Sales PremiumInventory Builder −1.11 −0.07
[−5.64] [−0.50]

Seasonal Sales PremiumNon-Inventory Builder −0.53 0.34
[−1.16] [1.25]

Panel C: Fama-French 5-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.11 −0.11
[−6.23] [−0.87]

Seasonal Sales PremiumNon-Inventory Builder −0.40 0.26
[−1.04] [1.16]

Panel D: Fama-French 6-Factor Model Alphas

Seasonal Sales PremiumInventory Builder −1.17 −0.12
[−6.32] [−0.91]

Seasonal Sales PremiumNon-Inventory Builder −0.29 0.24
[−0.84] [1.00]
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A Model Solution

In this appendix, we offer details on how we numerically find the value and the expected return of the

firm in the model. We start with detailing the firm’s optimal production and selling decisions. We then

continue with introducing our finite difference scheme. We finally derive the boundary conditions for our

finite difference scheme and discuss how we “knit together” the separate solution components.

A.1 The Firm’s Optimal Policies

Recall that the differential of the output price Pt in our main model obeys

dPt = (α + κ sin(ηt))Ptdt + σPtdBt, (A1)

and let µ be the expected return of a portfolio replicating the stochastic variations in the output price and

thus reflecting its systematic risk. The “expected-return shortfall” of the output price can then be written

as δt = µ − 1
PtdtE[dPt] = µ − α − κ sin(ηt), which is a sinusoidal function of time. Using the expected-return

shortfall δt, we can rewrite the output price differential in Equation (A1) as

dPt = (µ − δt)Ptdt + σPtdBt, (A2)

whose closed-form solution is well known to be equal to

Pt = P0 exp
(∫ t

0
(µ − δu)du − 1

2σ2t + σBt

)
(A3)

= P0 exp
((

α − 1
2σ2

)
t + κ

η
(1 − cos(ηt)) + σBt

)
. (A4)

Under the martingale measure, the instantaneous drift µ − δt changes to r − δt, yielding

Pt = P0 exp
(∫ t

0
(r − δu)du − 1

2σ2t + σBQ
t

)
(A5)

= P0 exp
((

r − µ + α − 1
2σ2

)
t + κ

η
(1 − cos(ηt)) + σBQ

t

)
, (A6)

where BQ
t is a Brownian motion under the martingale measure.
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Using Equation (A6), we can easily show that the martingale-measure expectation of the output price

at time t taken at time s can be written as

EQ
s [Pt] = Ps exp

(
(r − µ + α)(t − s) + κ

η
(cos(ηs) − cos(ηt))

)
, (A7)

allowing us, in turn, to write the first-order condition for maximization problem (6) as

Pt exp
(

−
∫ t∗

t
(µ − α − κ sin(ηu))du

)
(µ − α − κ sin(ηt∗)) + cIe−rt∗ = 0, (A8)

which has to be numerically solved for t∗. Using the same equation, we can also calculate the amount of

production output yielding a local maximum for objective function (7) from

Q′
t = EQ

t [Pt∗ ]e−r(t∗−t) − c1 − CI(t, t∗)
c2

. (A9)

We ensure feasibility by setting Q∗
t = min{max{0, Q′

t}, K̄}.

A.2 Finite Difference Scheme

We next discretize PDEs (8) and (9) on three and two-dimensional grids, respectively, approximate the

partial derivatives in those PDEs using finite differences, and derive an explicit scheme relating firm value

on some grid point to its values on other points. To begin with, we first replace the output price in both

PDEs with its log counterpart pt = ln(Pt). Doing so, PDE (8) becomes equal to

∂W IB

∂t
+ Q∗

t

∂W IB

∂It
+
(

r − δt − 1
2σ2

)
∂W IB

∂pt
+ 1

2σ2 ∂2W IB

∂p2
t

− rW IB − c1Q∗
t − 1

2c2Q∗2
t − cIIt = 0, (A10)

while PDE (9) becomes equal to

∂W IS

∂t
+
(

r − δt − 1
2σ2

)
∂W IS

∂pt
+ 1

2σ2 ∂2W IS

∂p2
t

− rW IS + PtQ
∗
t − c1Q∗

t − 1
2c2Q∗2

t = 0. (A11)
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We next consider the three-dimensional mesh on [tmin, tmax] × [pmin, pmax] × [Imin, Imax] given by



ti = tmin + i∆t; i = 0, ..., Nt,

pj = pmin + j∆p; j = 0, ..., Np,

In = Imin + n∆I; n = 0, ..., NI

(A12)

to discretize PDE (A10) and the two-dimensional mesh on [tmin, tmax] × [pmin, pmax] given by


ti = tmin + i∆t; i = 0, ..., Nt,

pj = pmin + j∆p; j = 0, ..., Np

(A13)

to discretize PDE (A11). In either case, we choose constant step sizes, tmin = 0, Imin = 0, and pmin sufficiently

negative such that Pmin, the minimum non-logged output price, is close to zero. We further choose Np

such that the output price is within a five standard deviation window around its unconditional real-world

expectation at time tmax. Because inventory building periods never last longer than one seasonal cycle, we

finally choose NI such that the inventory axis goes up to K̄ 2π
η , which is the output in inventory at the end

of a cycle if the firm produced at full capacity over the entire cycle without selling output.

We now let W IB
i,j,n denote the value of W IB(t, Pt, It) at point (i, j, n) in grid (A12). We employ central

and forward differences to approximate the partial derivatives in PDE (A10), assuming that the partial

derivatives with respect to the log-price pt and the inventory It have the same values on grid points (i, j, n)

and (i + 1, j, n) to obtain an explicit scheme. To be specific, we use the following approximations

∂W

∂t
= Wi+1,j,n − Wi,j,n

∆t
+ O(∆t), (A14)

∂W

∂It
= Wi+1,j,n+1 − Wi+1,j,n

∆I
+ O(∆I), (A15)

∂W

∂pt
= Wi+1,j+1,n − Wi+1,j−1,n

2∆p
+ O(∆p2), (A16)

∂2W

∂p2
t

= Wi+1,j+1,n − 2Wi+1,j,n + Wi+1,j−1,n

∆p2 + O(∆p2) (A17)
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in PDE (A10), leading the inventory builder’s value at grid point (i, j, n) to be equal to

W IB
i,j,n = 1

1 + r∆t

∆t

∆I
Q∗

ti
W IB

i+1,j,n+1 − 1
1 + r∆t

∆t

∆I
Q∗

ti
W IB

i+1,j,n

= + 1
1 + r∆t

(
−
(

r − δti − 1
2σ2

) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IB

i+1,j−1,n

= + 1
1 + r∆t

(
1 − σ2 ∆t

∆p2

)
W IB

i+1,j,n

= + 1
1 + r∆t

((
r − δti − 1

2σ2
) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IB

i+1,j+1,n

= − 1
1 + r∆t

(
c1Q∗

ti
+ 1

2c2Q∗2
ti

+ cIIn

)
∆t.

(A18)

Denoting by W IS
i,j the value of W IS(t, Pt) at point (i, j) in grid (A13), we also use Equations (A14),

(A16), and (A17) in PDE (A11), leading the instantaneous seller’s value at grid point (i, j) to be equal to

W IS
i,j = 1

1 + r∆t

(
−
(

r − δti − 1
2σ2

) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IS

i+1,j−1

= + 1
1 + r∆t

(
1 − σ2 ∆t

∆p2

)
W IS

i+1,j

= + 1
1 + r∆t

((
r − δti − 1

2σ2
) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
W IS

i+1,j+1

= + 1
1 + r∆t

(
PjQ∗

ti
− c1Q∗

ti
− 1

2c2Q∗2
ti

)
∆t.

(A19)

A.3 Recursive Solution and Boundary Conditions

We finally explain how we knit together the grids in Equations (A12) and (A13) to obtain the value of a

firm which optimally decides to act as inventory builder in some time periods and as instantaneous seller

in others. To that end, we solve for that firm’s value recursively, starting at the terminal time tmax and

assuming that the firm ceases to exist after that time. Choosing a sufficiently large tmax, we can ensure that

our finite difference estimate is arbitrarily close to the true value of the firm with an infinite horizon. While

not strictly necessary, we also ensure that the firm is always an instantaneous seller at time tmax.

We then solve the two-dimensional instantaneous-seller PDE (A11) on the entire two-dimensional grid

in Equation (A13). To that end, we use the following boundary condition at t = tmax

W IS(tmax, Pt) =
(
PjQ∗

tmax − CP (Q∗
tmax)

)
∆t ≈ 0, (A20)
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where Q∗
tmax = min

{
max

{
Ptmax −c1

c2
, 0
}

, K̄
}

. We can interpret that condition as the terminal instantaneous

profit of an instantaneous seller before ceasing to exist. Realizing that Pt = 0 is an absorbing barrier for

the stochastic process in Equation (1), we next use W IS(t, Pmin) = 0 as boundary condition at P = Pmin.

We finally realize that, as Pt → ∞, the firm optimally produces at full capacity over its remaining lifetime,

consistently setting Q∗
t = K̄. We thus use the following boundary condition at P = Pmax

W IS(ti, Pmax) =
∫ tmax

ti

(
EQ

ti
[Pu]K̄ − CP (K̄)

)
e−r(u−ti)du (A21)

= PmaxK̄

∫ tmax

ti

e
−
∫ u

ti
δτ dτ du −

(
c1K̄ + 1

2c2K̄2
) 1 − e−r(tmax−ti)

r
, (A22)

noticing that the exterior integral requires a numerical solution. Relying on those boundary conditions, we

can use Equation (A19) to fill in the entire two-dimensional grid in Equation (A13).

As a next step, we turn to the three-dimensional inventory-builder PDE (A10), solving it on the three-

dimensional grid in Equation (A12) down until that output price below which the firm always acts as

instantaneous seller (the lower output price boundary) and right until those output price-time combinations

at which the firm conducts its final switch from inventory builder to instantaneous seller (the upper time

boundary). In Figure 3, the lower output price boundary is, for example, close to 0.20, and the upper time

boundary is the upward sloping part of the final parabola before the firm ceases to exist. We set the value

of the firm on the lower output price boundary, W IB(t, P l
t , It), equal to

W IB(t, P l
t , It) = W IS(t, P l

t ), (A23)

where P l
t is the lower output price boundary, and W IS(t, P l

t ) is the value of the instantaneous seller at time

t and output price P l
t taken from the two-dimensional grid solved before. Conversely, we set the value of

the firm on the upper time boundary, W IB(tBtSn , P BtSn
t , It), equal to

W IB(tBtSn , P BtSn
t , It) = W IS(tBtSn , P BtSn

t ) + PtIt, (A24)

where the tBtSn-P BtSn
t pair is a time-output price combination at which the firm conducts its final switch

from inventory builder to instantaneous seller, and W IS(tBtSn , P BtSn
t ) is the value of the instantaneous seller

at that combination taken from the two-dimensional grid solved before. Boundary condition (A24) implies
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that, on the optimal sales date, the value of the inventory builder is equal to the value of the corresponding

instantaneous seller plus the sales revenue generated from liquidating the inventory.

While we again set the firm’s value on the lower output-price boundary, W IB(t, Pmin, It), equal to zero, we

need to generalize our calculations in Equations (A21) and (A22) to find its value on the upper output-price

boundary, W IB(t, Pmax, It). To that end, we first recall that, as Pt → ∞, the firm optimally produces at

full capacity over its remaining lifetime, consistently setting Q∗
t = K̄. For each grid point ti on the upper

output price boundary, we then use objective function (6) to identify all remaining inventory building

and instantaneous sales regions until time tmax (see Figure 2 for an illustrative example). We finally set

W IB(ti, Pmax, It) equal to the sum of the present values of the firm’s net cash flows over each of those

inventory building and instantaneous sales periods, including the remainder of the current period.

To calculate the time-s present value of the net cash flows generated by the firm over an inventory

building period lasting from time t to t′, with s < t < t′, we start with assuming that the firm holds no

inventory at time t. In that case, the firm grows its inventory from zero to
∫ t′

t Q∗
udu = K̄(t′ − t) from time t

to t′, before depleting its entire inventory and selling K̄(t′ − t) output units out of it at a price of Pt′ at

time t′. Given that, the time-s present value of the net cash flows, V IB
s (t, t′), is

V IB
s (t, t′) = EQ

s [Pt′ ]K̄(t′ − t)e−r(t′−s) −
∫ t′

t
CP (K̄)e−r(u−s)du −

∫ t′

t
K̄(u − t)cIe−r(u−s)du (A25)

= PmaxK̄(t′ − t)e−
∫ t′

s
δudu −

(
c1K̄ + 1

2c2K̄2
)

e−r(t−s) − e−r(t′−s)

r

= − cI

r2 K̄
(
e−r(t−s) − e−r(t′−s)(1 + r(t′ − t))

)
,

(A26)

where
∫ t′

s δudu = (µ − α)(t′ − s) + κ
η (cos(ηt′) − cos(ηs)). If, in contrast, the firm already holds an amount

of inventory equal to Īt at time t, we need to add the present value of the incremental cash flows associated

with that inventory to V IB
s (t, t′). We can calculate that present value, V IB+

s (t, t′), using

V IB+
s (t, t′) = EQ

s [Pt′ ]Īte
−r(t′−s) −

∫ t′

t
ĪtcIe−r(u−s)du (A27)

= Īt

(
Pmaxe−

∫ t′

s
δudu − cI

e−r(t−s) − e−r(t′−s)

r

)
. (A28)

To calculate the time-s present value of the net cash flows generated by the firm over an instantaneous

selling period lasting from time t to t′, with again s < t < t′, we first recall that, over each instant within
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that period, the firm produces an amount of output equal to Q∗
udu = K̄du and instantaneously sells that

at a price of Pu. Given that, the time-s present value of the net cash flows, V IS
s (t, t′), is

V IS
s (t, t′) =

∫ t′

t

(
EQ

s [Pu]K̄ − CP (K̄)
)

e−r(u−s)du (A29)

= PmaxK̄

∫ t′

t
e−
∫ u

s
δτ dτ du −

(
c1K̄ + 1

2c2K̄2
)

e−r(t−s) − e−r(t′−s)

r
. (A30)

We finally find the firm’s value on the upper, W IB(t, Pt, Imax), and on the lower inventory boundary,

W IB(t, Pt, Imin). To do so, we start from the forward finite difference approximation

∂W IB(ti, Pt, It)
∂t

≈ W IB(ti+1, Pt, It) − W IB(ti, Pt, It)
∆t

. (A31)

We then notice that, keeping the output price, Pt, and the amount of inventory, It, constant, the difference

in firm value between time ti and ti+1 is the present value of the additional output produced and put into

inventory over that period. That present value is approximately equal to

W IB(ti+1, Pt, It) − W IB(ti, Pt, It) = −
(
EQ

ti
[Pt∗ ]Q∗

ti
e−r(t∗−ti) − CP (Q∗

ti
) − Q∗

ti
CI(ti, t∗)

)
∆t, (A32)

allowing us to write the firm’s value on the upper inventory boundary, W IB(t, Pt, Imax), as

W IB(ti, Pt, Imax) = W IB(ti+1, Pt, Imax) +
(
EQ

ti
[Pt∗ ]Q∗

ti
e−r(t∗−ti) − CP (Q∗

ti
) − Q∗

ti
CI(ti, t∗)

)
∆t, (A33)

and the firm’s value on the lower inventory boundary, W IB(t, Pt, Imin), as

W IB(ti, Pt, Imin) = W IB(ti+1, Pt, Imin) +
(
EQ

ti
[Pt∗ ]Q∗

ti
e−r(t∗−ti) − CP (Q∗

ti
) − Q∗

ti
CI(ti, t∗)

)
∆t. (A34)

Having used Equation (A18) in conjunction with the above boundary conditions to fill in the three-

dimensional grid, we finally always replace W IB(t, Pt, It) with PtIt+W IB(t, Pt, 0) when PtIt+W IB(t, Pt, 0) >

W IB(t, Pt, It). Doing so, we ensure that the firm always immediately sells off its entire output in inventory

when it is value-maximizing to do so. We further ensure that firm value cannot turn negative.

We then return to the two-dimensional instantaneous-seller PDE (A11), solving it on the two-dimensional
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grid in Equation (A13) down until that output price below which the firm always acts as instantaneous seller

(the lower output price boundary) and right until those output price-time combinations at which the firm

conducts its final switch from instantaneous seller to inventory builder (the upper time boundary). While

the lower output price boundary in Figure 3 is, for example, again close to 0.20, the upper time boundary

is now the downward sloping part of the final parabola before the firm ceases to exist. While we else use the

same boundary conditions as for the prior two dimensional grid, we now set the firm’s value on the upper

time boundary at which the firm switches from instantaneous seller to inventory builder to

W IS(tStBn , P StBn) = W IB(tStBn , P StBn
t , It = 0), (A35)

where the tStBn-P StBn
t pair is a time-output price combination at which the firm switches, and W IB(tStBn , P StBn

t ,

It = 0) is the value of an inventory builder holding zero inventory. As before, we take the lower output

price and upper time boundary values from the solution to the prior three dimensional grid.

We continue in that manner, next solving the three-dimensional inventory-builder PDE (A10) on the

three-dimensional grid in Equation (A12) down until that output price below which the firm always acts as

instantaneous seller (the lower output price boundary) and right until those output price-time combinations

at which the firm conducts its penultimate switch from inventory builder to instantaneous seller (the upper

time boundary). We again take the lower output price and upper time boundary values from the solution to

the prior two dimensional grid. Having solved all available grids, we finally merge them into one firm value

grid, always collecting firm value during instantaneous selling periods from the appropriate two-dimensional

grids and during inventory building periods from the appropriate three-dimensional grids.

We compute the firm’s expected excess return as in Equation (12). To this end, let ERi,j,n denote that

return at grid point (i, j, n) in the firm value grid. Approximating the partial derivative in Equation (12)

using central differences, we can calculate the expected excess return at grid point (i, j, n) as

ERi,j,n = Wi,j+1,n − Wi,j−1,n

Pj+1 − Pj−1

Pj

Wi,j,n
(µ − r). (A36)
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B Growth Option Extension

In this appendix, we endow the firm in our main theoretical model with a single growth option allowing it

to instantaneously and irreversibly double its production capacity at an investment cost of k. In technical

jargon, the growth option is thus a perpetual American call option written on K̄ additional production

units. To make sure that the firm’s total production costs continue to be described by the convex function

c1Qt + 1
2Q2

t , we assume that the cost of producing Qt output units with the additional production units is

CP (Qt) = c1(K̄ + Qt) + 1
2c2(K̄ + Qt)2, with Qt ∈ [0, K̄]. Under that assumption, we are able to compute

the value of the additional production units, which we denote by U(t, Pt, It), using the methodology in

Appendix A, using slightly amended versions of maximization problem (7), the upper output price boundary

condition derived in Equations (A26), (A28), and (A30) in Appendix A, and the upper and lower inventory

boundary conditions in, respectively, Equations (A33) and (A34) in that appendix.

We next value the growth option written on the K̄ additional production units. Given that exercising

the option yields production units with an empty inventory, the value of the growth option is independent

of the output in inventory It, allowing us to write it as F = F (t, Pt). As generally the case for American

call options, the firm optimally exercises the growth option whenever the output price Pt rises above the

time-varying threshold P ∗
t . Before the firm exercises the growth option, it is then easy to show that the

value of the growth option has to satisfy the two-dimensional PDE

∂F

∂t
+
(

r − δt − 1
2σ2

)
∂F

∂pt
+ 1

2σ2 ∂2F

∂p2
t

− rF = 0. (B1)

We solve PDE (B1) subject to the usual spatial boundary conditions for American call options, F (ti, Pmin) = 0

and F (ti, Pmax) = U(ti, Pmax, 0) − ke−r(tmax−ti) as well as the terminal boundary condition F (tmax, Pj) =

max{U(tmax, Pj , 0) − k, 0}. We further determine the free exercise boundary, P ∗
t , from

F (t, P ∗
t ) = U(t, P ∗

t , 0) − k. (B2)

To solve PDE (B1) using an explicit finite difference scheme, we let Fi,j be the value of F (t, Pt) at

point (i, j) in grid (A13). We next plug Equations (A14), (A16), and (A17) into PDE (B1), allowing us to

47



Figure B.1: The figure plots the optimal output price threshold P ∗
t above which the firm exercises its

growth option over the period from t = 0 to 4 under an output price trajectory at which firm value shows
no general tendency to rise or fall. The vertical line shows the exercise time. The gray bars indicate the
periods during which the firm acts as an instantaneous seller. We describe the parameter values in the text.

calculate the option’s value at grid point (i, j) from

Fi,j = 1
1 + r∆t

(
−
(

r − δti − 1
2σ2

) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
Fi+1,j−1

= + 1
1 + r∆t

(
1 − σ2 ∆t

∆p2

)
Fi+1,j

= + 1
1 + r∆t

((
r − δti − 1

2σ2
) ∆t

2∆p
+ 1

2σ2 ∆t

∆p2

)
Fi+1,j+1.

(B3)

To incorporate option exercises, we replace each Fi,j value in the grid with the corresponding exercise payoff

max{U(ti, Pj , 0) − k, 0} if the exercise payoff exceeds the original value. We finally set P ∗
t to the lowest

output price in the grid for which the exercise payoff exceeds the original value per time t.

The value of the firm, W (t, Pt, It), then becomes the sum of its production capacity-in-place, V (t, Pt, It),

valued as described in Appendix A, and its growth option, F (t, Pt)

W (t, Pt, It) = V (t, Pt, It) + F (t, Pt), (B4)

whereas its conditional expected excess return, E[rW ] − r, turns into the value-weighted average of the

expected return on the production capacity-in-place and the growth option

E[rW ] − r =
(

V (t, Pt, It)
W (t, Pt, It)

ΩV + F (t, Pt)
W (t, Pt, It)

ΩF

)
(µ − r), (B5)

where ΩF = ∂F (t,Pt)
∂Pt

Pt
F (t,Pt) is the elasticity of the growth option.
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Figure B.2: The figure plots the firm’s optimal production quantity Q∗
t (Panel A), its accumulated output in

inventory It (Panel B), its value W (t, Pt, It) (Panel C), and its expected excess return E[rW ]−r (Panel D) over
the period from t = 0 to 4 under an output price trajectory at which firm value shows no general tendency to
rise or fall. The gray bars in each subplot indicate the periods during which the firm acts as an instantaneous
seller. We describe the parameter values in the text.

Figure B.1 plots the optimal output price threshold above which the firm exercises its growth option

P ∗
t (solid black line) under the output price trajectory also used in the main paper (broken black line)

over the time period from t = 0 to 4. We use the same parameter values as in Section 2.2 to construct the

figure. The exception is the starting value of the output price, P0, which we set to three to ensure that the

growth option captures a meaningful fraction of total firm value. We set the investment cost, k, to two. The

figure suggests that the seasonality in the output price translates into seasonality in the optimal output

price threshold. Interestingly, however, it further shows that the firm is more likely to invest during a low

rather than high output price season (i.e., the output price threshold is high when the seasonal output

price is high, and vice versa). The reason is that adding new production capacity during a low output price

season allows the firm to raise its production over that season to sell more output over the next high output

price season, boosting its profitability and, as a consequence, maximizing its value.

Figure B.2 plots the optimal production quantity Q∗
t (Panel A), accumulated inventory It (Panel B),

value (Panel C), and expected excess return (Panel D) of the firm with a growth option at the same output

price trajectory as above over the time period from t = 0 to 4. Given that we assume a higher starting

value for the output price, P0, to ensure that the growth option captures a meaningful fraction of total firm

value, Panel A shows that the firm consistently produces at its full capacity K̄. In accordance, Panel B

shows that the firm’s accumulated inventory rises more rapidly than in Panel B in Figure 5 in the main

text, while Panel C indicates that firm value is higher than in Panel C in that same figure. Notwithstanding

the growth option, Panel D, however, shows that the expected excess return of the firm with growth option
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behaves similarly over time as that of the firm without growth option (compare with Panel D in 5). To be

precise, the expected excess return still markedly rises over inventory building periods, shoots up at their

end, but then stays close to constant over instantaneous selling periods.
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C Variable Definitions

Table C1
Variable Definitions
The table presents the definitions of our analysis variables. In our asset pricing tests, we update the variables
indexed by “M” (“Q”) [“A”] on a monthly (quarterly) [annual] basis and use their values to condition returns over
month t + 1 (month t + 1) [the period from July of year t to June of year t + 1]. We show the data-provider
(CRSP and Compustat) mnemonics of the variables in parentheses.

Variable Name Variable Definition

Panel A: Seasonality Variables

QSales (Q) Mean of sales proportion of the current quarter in year t − 2 and t − 3.
The sales proportion equals quarterly sales (saleq) divided by sum of all
quarterly sales in that fiscal year (see Grullon et al. (2020)).

QSalesRank (Q) Monthly rank of QSales scaled by the monthly number of observations.
Seasonality (A) Standard deviation of the four QSales values within one fiscal year.
QInventory (Q) Mean of inventory proportion of the previous quarter in year t − 2 and

t − 3. The proportion equals quarterly total inventory (invtq)) divided
by sum of all quarterly inventory in that fiscal year.

DummyInventoryBuilder (A) Dummy equal to one if QSales and QInventory take their maximum
value in the same quarter of that year, else zero.

QFGInventory (Q) Mean of inventory proportion of the previous quarter in year t − 2 and
t − 3. The proportion equals quarterly finished goods inventory (invfgq)
divided by sum of all quarterly inventory in that fiscal year.

Panel B: Control Variables

MarketBeta (M) Sum of slope coefficients from a stock-level regression of excess stock
returns (ret) on current, one-day lagged, and the sum of two-, three-,
and four-day lagged excess market returns, where the regression is run
using daily data over the prior 12 months. We require that the regression
is run on at least 200 observations (see Lewellen and Nagel (2006)).

MarketSize (A) Log of the product of the stock price (abs(prc)) and common shares
outstanding (shrout) at the end of the prior calender year (in millions).

BookToMarket (A) Log of the ratio of the book value of equity to the market value of
equity (abs(prc) times shrout), where the book value of equity equals
stockholder’s equity (seq) plus deferred taxes (txditc) plus investment
tax credit (itcb, zero if missing) minus preferred stock (pstkrv, pstkl,
pstk, or zero, in that order of availability). The variables are from the
fiscal year-end in calendar year t−1 (see Fama and French (1992, 1993)).

(continued on next page)
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Table C1
Variable Definitions (cont.)

Variable Name Variable Definition

Momentum (M) Log of one plus the stock return (ret) compounded over the period from month t − 11
to month t − 1 (see Jegadeesh and Titman (1993)).

Investment (A) Log of the gross percentage change in total assets (at) from the fiscal year-end in
calendar year t − 2 to the fiscal year-end in year t − 1 (see Fama and French (2015)).

Profitability (A) Ratio of sales (sale) net of costs of goods sold (cogs), selling, general, and administrative
expenses (xsga, zero if missing), and interest expenses (xint, zero if missing) to the
book value of equity, which equals stockholder’s equity (seq) plus deferred taxes
(txditc) plus investment tax credit (itcb, zero if missing) minus preferred stock (pstkrv,
pstkl, pstk, or zero, in that order of availability). The variables are from the fiscal
year-end in calendar year t − 1 (see Fama and French (2015)).

Panel C: Portfolio Characteristics

RSeason(xy) (M) Mean of the same calendar-month return (ret) taken over the prior x calendar years,
with x equal to three, five, and seven (see Heston and Sadka (2008)).

ESeason (Q) Average rank of the current fiscal quarter in a ranking of the last 20 quarterly earnings
(measured as earnings per share excluding extraordinary items adjusted for stock
splits (epsfxq)) from highest to lowest (see Chang et al. (2017)).
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